scispace - formally typeset
Search or ask a question
Author

Robin Doss

Other affiliations: Chang'an University, IBM
Bio: Robin Doss is an academic researcher from Deakin University. The author has contributed to research in topics: Computer science & Authentication. The author has an hindex of 18, co-authored 143 publications receiving 1303 citations. Previous affiliations of Robin Doss include Chang'an University & IBM.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a novel traceback method for DDoS attacks that is based on entropy variations between normal and DDoS attack traffic, which is fundamentally different from commonly used packet marking techniques and is memory nonintensive, efficiently scalable, robust against packet pollution, and independent of attack traffic patterns.
Abstract: Distributed Denial-of-Service (DDoS) attacks are a critical threat to the Internet. However, the memoryless feature of the Internet routing mechanisms makes it extremely hard to trace back to the source of these attacks. As a result, there is no effective and efficient method to deal with this issue so far. In this paper, we propose a novel traceback method for DDoS attacks that is based on entropy variations between normal and DDoS attack traffic, which is fundamentally different from commonly used packet marking techniques. In comparison to the existing DDoS traceback methods, the proposed strategy possesses a number of advantages - it is memory nonintensive, efficiently scalable, robust against packet pollution, and independent of attack traffic patterns. The results of extensive experimental and simulation studies are presented to demonstrate the effectiveness and efficiency of the proposed method. Our experiments show that accurate traceback is possible within 20 seconds (approximately) in a large-scale attack network with thousands of zombies.

182 citations

Journal ArticleDOI
TL;DR: The simulation under the veins framework is carried out to verify the feasibility of the scheme in reducing the selfish behavior and malicious attacks in IoV and propose an effective decentralized authentication mechanism for IoV on the basis of the consensus algorithm of blockchain technology.
Abstract: Thanks to the rapid development in mobile vehicles and wireless technologies, the Internet of Vehicles (IoV) has become an attractive application that can provide a large number of mobile services for drivers. Vehicles can be informed of the mobile position, direction, speed, and other real-time information of nearby vehicles to avoid traffic jams and accidents. However, the environments of IoV could be dangerous in the absence of security protections. Due to the openness and self-organization of IoV, there are enormous malicious attackers. To guarantee the safety of mobile services, we propose an effective decentralized authentication mechanism for IoV on the basis of the consensus algorithm of blockchain technology. The simulation under the veins framework is carried out to verify the feasibility of the scheme in reducing the selfish behavior and malicious attacks in IoV.

104 citations

Posted Content
TL;DR: This survey aims to identify the key vulnerabilities in smart contracts on Ethereum in the perspectives of their internal mechanisms and software security vulnerabilities by correlating 16 Ethereum vulnerabilities and 19 software security issues.
Abstract: Smart contracts are software programs featuring both traditional applications and distributed data storage on blockchains. Ethereum is a prominent blockchain platform with the support of smart contracts. The smart contracts act as autonomous agents in critical decentralized applications and hold a significant amount of cryptocurrency to perform trusted transactions and agreements. Millions of dollars as part of the assets held by the smart contracts were stolen or frozen through the notorious attacks just between 2016 and 2018, such as the DAO attack, Parity Multi-Sig Wallet attack, and the integer underflow/overflow attacks. These attacks were caused by a combination of technical flaws in designing and implementing software codes. However, many more vulnerabilities of less severity are to be discovered because of the scripting natures of the Solidity language and the non-updateable feature of blockchains. Hence, we surveyed 16 security vulnerabilities in smart contract programs, and some vulnerabilities do not have a proper solution. This survey aims to identify the key vulnerabilities in smart contracts on Ethereum in the perspectives of their internal mechanisms and software security vulnerabilities. By correlating 16 Ethereum vulnerabilities and 19 software security issues, we predict that many attacks are yet to be exploited. And we have explored many software tools to detect the security vulnerabilities of smart contracts in terms of static analysis, dynamic analysis, and formal verification. This survey presents the security problems in smart contracts together with the available analysis tools and the detection methods. We also investigated the limitations of the tools or analysis methods with respect to the identified security vulnerabilities of the smart contracts.

82 citations

Journal ArticleDOI
TL;DR: The analysis and the preliminary experiments indicate that the proposed method- can discriminate mimicking flooding attacks from legitimate accessing efficiently and effectively.
Abstract: DDoS is a spy-on-spy game between attackers and detectors. Attackers are mimicking network traffic patterns to disable the detection algorithms which are based on these features. It is an open problem of discriminating the mimicking DDoS attacks from massive legitimate network accessing. We observed that the zombies use controlled function(s) to pump attack packages to the victim, therefore, the attack flows to the victim are always share some properties, e.g. packages distribution behaviors, which are not possessed by legitimate flows in a short time period. Based on this observation, once there appear suspicious flows to a server, we start to calculate the distance of the package distribution behavior among the suspicious flows. If the distance is less than a given threshold, then it is a DDoS attack, otherwise, it is a legitimate accessing. Our analysis and the preliminary experiments indicate that the proposed method- can discriminate mimicking flooding attacks from legitimate accessing efficiently and effectively.

81 citations

Journal ArticleDOI
01 Jan 2013
TL;DR: This scheme is the first quadratic residues based scheme to achieve compliance to EPC Class-1 Gen-2 specifications and achieves authentication of the tag, reader and back-end server in the RFID system and protects the privacy of the communication without the need for tags to implement expensive hash functions.
Abstract: In this paper we propose a novel approach to authentication and privacy in mobile RFID systems based on quadratic residues and in conformance to EPC Class-1 Gen-2 specifications. Recently, Chen et al. (2008) [10] and Yeh et al. (2011) [11] have both proposed authentication schemes for RFID systems based on quadratic residues. However, these schemes are not suitable for implementation on low-cost passive RFID tags as they require the implementation of hash functions on the tags. Consequently, both of these current methods do not conform to the EPC Class-1 Gen-2 standard for passive RFID tags which from a security perspective requires tags to only implement cyclic redundancy checks (CRC) and pseudo-random number generators (PRNG) leaving about 2.5k-5k gates available for any other security operations. Further, due to secure channel assumptions both schemes are not suited for mobile/wireless reader applications. We present the collaborative authentication scheme suitable for mobile/wireless reader RFID systems where the security of the server-reader channel cannot be guaranteed. Our schemes achieves authentication of the tag, reader and back-end server in the RFID system and protects the privacy of the communication without the need for tags to implement expensive hash functions. Our scheme is the first quadratic residues based scheme to achieve compliance to EPC Class-1 Gen-2 specifications. Through detailed security analysis we show that the collaborative authentication scheme achieves the required security properties of tag anonymity, reader anonymity, reader privacy, tag untraceability and forward secrecy. In addition, it is resistant to replay, impersonation and desynchronisation attacks. We also show through strand space analysis that the proposed approach achieves the required properties of agreement, originality and secrecy between the tag and the server.

68 citations


Cited by
More filters
Posted Content
TL;DR: This paper defines and explores proofs of retrievability (PORs), a POR scheme that enables an archive or back-up service to produce a concise proof that a user can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety.
Abstract: In this paper, we define and explore proofs of retrievability (PORs). A POR scheme enables an archive or back-up service (prover) to produce a concise proof that a user (verifier) can retrieve a target file F, that is, that the archive retains and reliably transmits file data sufficient for the user to recover F in its entirety.A POR may be viewed as a kind of cryptographic proof of knowledge (POK), but one specially designed to handle a large file (or bitstring) F. We explore POR protocols here in which the communication costs, number of memory accesses for the prover, and storage requirements of the user (verifier) are small parameters essentially independent of the length of F. In addition to proposing new, practical POR constructions, we explore implementation considerations and optimizations that bear on previously explored, related schemes.In a POR, unlike a POK, neither the prover nor the verifier need actually have knowledge of F. PORs give rise to a new and unusual security definition whose formulation is another contribution of our work.We view PORs as an important tool for semi-trusted online archives. Existing cryptographic techniques help users ensure the privacy and integrity of files they retrieve. It is also natural, however, for users to want to verify that archives do not delete or modify files prior to retrieval. The goal of a POR is to accomplish these checks without users having to download the files themselves. A POR can also provide quality-of-service guarantees, i.e., show that a file is retrievable within a certain time bound.

1,783 citations

Journal ArticleDOI
TL;DR: Two new information metrics such as the generalized entropy metric and the information distance metric are proposed to detect low-rate DDoS attacks by measuring the difference between legitimate traffic and attack traffic.
Abstract: A low-rate distributed denial of service (DDoS) attack has significant ability of concealing its traffic because it is very much like normal traffic. It has the capacity to elude the current anomaly-based detection schemes. An information metric can quantify the differences of network traffic with various probability distributions. In this paper, we innovatively propose using two new information metrics such as the generalized entropy metric and the information distance metric to detect low-rate DDoS attacks by measuring the difference between legitimate traffic and attack traffic. The proposed generalized entropy metric can detect attacks several hops earlier (three hops earlier while the order α = 10 ) than the traditional Shannon metric. The proposed information distance metric outperforms (six hops earlier while the order α = 10) the popular Kullback-Leibler divergence approach as it can clearly enlarge the adjudication distance and then obtain the optimal detection sensitivity. The experimental results show that the proposed information metrics can effectively detect low-rate DDoS attacks and clearly reduce the false positive rate. Furthermore, the proposed IP traceback algorithm can find all attacks as well as attackers from their own local area networks (LANs) and discard attack traffic.

351 citations

Journal ArticleDOI
19 Jun 2019
TL;DR: This paper provides a comprehensive survey on the most influential and basic attacks as well as the corresponding defense mechanisms that have edge computing specific characteristics and can be practically applied to real-world edge computing systems.
Abstract: The rapid developments of the Internet of Things (IoT) and smart mobile devices in recent years have been dramatically incentivizing the advancement of edge computing. On the one hand, edge computing has provided a great assistance for lightweight devices to accomplish complicated tasks in an efficient way; on the other hand, its hasty development leads to the neglection of security threats to a large extent in edge computing platforms and their enabled applications. In this paper, we provide a comprehensive survey on the most influential and basic attacks as well as the corresponding defense mechanisms that have edge computing specific characteristics and can be practically applied to real-world edge computing systems. More specifically, we focus on the following four types of attacks that account for 82% of the edge computing attacks recently reported by Statista: distributed denial of service attacks, side-channel attacks, malware injection attacks, and authentication and authorization attacks. We also analyze the root causes of these attacks, present the status quo and grand challenges in edge computing security, and propose future research directions.

286 citations

01 Jan 2016
TL;DR: This service oriented architecture concepts technology and design will help people to read a good book with a cup of tea in the afternoon, instead they cope with some harmful virus inside their laptop.
Abstract: Thank you very much for downloading service oriented architecture concepts technology and design. Maybe you have knowledge that, people have look hundreds times for their favorite books like this service oriented architecture concepts technology and design, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they cope with some harmful virus inside their laptop.

278 citations