scispace - formally typeset
Search or ask a question
Author

Robin E. Smith

Bio: Robin E. Smith is an academic researcher from Alfred Hospital. The author has contributed to research in topics: Mineralocorticoid receptor & Mineralocorticoid. The author has an hindex of 20, co-authored 30 publications receiving 2198 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The 11β-hydroxysteroid dehydrogenase (11βHSD) as mentioned in this paper was found to protect the nonselective mineralocorticoid receptor from occupation by glucocorticity, and to modulate access of glucoc Corticoid to glucoc corticoid receptors resulting in protection of the fetus and gonads.

678 citations

Journal ArticleDOI
TL;DR: Cerebral necrosis is unlikely at doses below 50 Gy in 25 fractions and the risk increases significantly with increasing radiation dose, fraction size, and the subsequent administration of chemotherapy.
Abstract: Purpose: To investigate radiation necrosis in patients treated for glioma in terms of incidence, outcomes, predictive and prognostic factors. Methods and Materials: Records were reviewed for 426 patients followed up until death or for at least 3 years. Logistic regression analysis was performed to identify predictive and prognostic factors. Multivariate survival analysis was conducted using Cox proportional hazards regression. Separate analyses were performed for the subset of 352 patients who received a biologically effective dose (BED) ≥85.5 Gy 2 (≥45 Gy/25 fractions) who were at highest risk for radionecrosis. Results: Twenty-one patients developed radionecrosis (4.9%). Actuarial incidence plateaued at 13.3% after 3 years. In the high-risk subset, radiation parameters confirmed as risk factors included total dose ( p p p p = 0.028), and the product of total dose and fraction size ( p = 0.001). No patient receiving a BED 2 developed radionecrosis. Subsequent chemotherapy significantly increased the risk of cerebral necrosis ( p = 0.001) even when adjusted for BED (odds ratio [OR], 5.8; 95% confidence interval [CI], 1.6–20.3) or length of follow-up (OR, 5.4; 95% CI, 1.5–19.3). Concurrent use of valproate appeared to delay the onset of necrosis ( p = 0.013). The development of radionecrosis did not affect survival ( p = 0.09). Conclusions: Cerebral necrosis is unlikely at doses below 50 Gy in 25 fractions. The risk increases significantly with increasing radiation dose, fraction size, and the subsequent administration of chemotherapy.

415 citations

Journal ArticleDOI
TL;DR: The results suggest that the 11 beta HSD2 enzyme colocalizes with the mineralocorticoid receptor in the distal nephron where it allows aldosterone to occupy its physiological receptor.
Abstract: It has been proposed that the inactivation of glucocorticoids by the enzyme 11 beta-hydroxysteroid dehydrogenase (11 beta HSD) is an obligatory step in the kidney, permitting binding of aldosterone to the mineralocorticoid receptor, and in the placenta, protecting the fetus from high circulating levels of maternal glucocorticoids. Both low and high affinity isoforms of 11 beta HSD are known to exist, with evidence accumulating that the former species (11 beta HSD1) does not fulfill criteria that would allow it to perform these physiological functions. We have recently cloned a high affinity isoform of the enzyme (11 beta HSD2) from a human kidney library and have shown this species to possess all of the characteristics predicted from whole cell studies. In the present study we have raised a polyclonal antibody (HUH23) to a synthetic peptide deduced from the carboxy-terminus of the protein. The immunopurified antibody recognized a single band at 41,000 daltons on Western blots of mammalian cells transfected with an expression plasmid containing 11 beta HSD2, slightly smaller than the predicted 44,140 daltons protein. A single band of identical size was also seen in blots of human kidney and placenta, suggesting post-translational processing of the enzyme. Immunohistochemical studies on frozen sections of human kidney showed strong 11 beta HSD2 immunoreactivity in the cortical distal convoluted tubules and collecting ducts. Strong staining was also observed in medullary tubules, which had the appearance of collecting ducts and the thick ascending limb of Henle's loop. Staining of medium intensity was observed in vascular smooth muscle cells. Epithelial cells of glomeruli showed weak but detectable reactivity with HUH23. In the placenta, HUH23 antibody immunoreactivity was restricted to syncytial trophoblast cells in which strong staining was observed. These results suggest that the 11 beta HSD2 enzyme colocalizes with the mineralocorticoid receptor in the distal nephron where it allows aldosterone to occupy its physiological receptor. Furthermore, 11 beta HSD2 is also ideally situated in the placenta to protect the fetus from high circulating levels of maternal glucocorticoids.

250 citations

Journal ArticleDOI
TL;DR: The presence of 11 beta HSD2 in nonrenal sodium-transporting epithelia is demonstrated and a range of tissues affected in the syndrome of apparent mineralocorticoid excess are described.
Abstract: The enzyme 11 beta-hydroxysteroid dehydrogenase type II (11 beta HSD2) confers specificity on the renal mineralocorticoid receptor by inactivating glucocorticoids. Mutations in this gene give rise to the syndrome of apparent mineralocorticoid excess, a congenital condition characterized by sodium retention, severe hypertension, and often by growth retardation. It is not known whether 11 beta HSD2 or another enzyme confers specificity in nonrenal sodium transporting epithelia, such as those in the sweat gland, salivary gland, and gastrointestinal tract. We previously have used the HUH23 antibody to localize 11 beta HSD2 in the human kidney, vascular smooth muscle cells, and placenta. In the present study, we have examined a range of human epithelia for the presence of 11 beta HSD2. In the skin, staining was seen in eccrine sweat glands and arterioles, whereas weak HUH23 immunostaining was observed in the epidermis. Staining was absent from sebaceous glands and hair follicles. In the parotid gland, the 11 b...

144 citations

Journal ArticleDOI
TL;DR: Gen deletion experiments in the mouse indicate that this enzyme is important both for the maintenance of normal serum glucocorticoid levels, and in the activation of key hepatic gluconeogenic enzymes, as well as as a mechanism providing ligand for the putative 11-dehydrocorticosterone receptor.

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Developing clinical practice guidelines for the diagnosis of Cushing's syndrome in patients with multiple and progressive features compatible with the syndrome, particularly those with a high discriminatory value, and patients with adrenal incidentaloma is recommended.
Abstract: Objective: The objective of the study was to develop clinical practice guidelines for the diagnosis of Cushing's syndrome. Participants: The Task Force included a chair, selected by the Clinical Guidelines Subcommittee (CGS) of The Endocrine Society, five additional experts, a methodologist, and a medical writer. The Task Force received no corporate funding or remuneration. Consensus Process: Consensus was guided by systematic reviews of evidence and discussions. The guidelines were reviewed and approved sequentially by The Endocrine Society's CGS and Clinical Affairs Core Committee, members responding to a web posting, and The Endocrine Society Council. At each stage the Task Force incorporated needed changes in response to written comments. Conclusions: After excluding exogenous glucocorticoid use, we recommend testing for Cushing's syndrome in patients with multiple and progressive features compatible with the syndrome, particularly those with a high discriminatory value, and patients with adrenal inci...

2,063 citations

Journal ArticleDOI
TL;DR: Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Abstract: Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.

1,665 citations

Journal ArticleDOI
TL;DR: The present paper addresses several psychological and biological variables, which may account for such dissociations, and aims to help researchers to rate the validity and psychobiological significance of salivary cortisol as an HPAA biomarker of stress in their experiments.

1,472 citations

Journal ArticleDOI
TL;DR: No substantial evidence has shown that RT induces irreversible cognitive decline in adults within 4 years of RT, and a clear correlation has been demonstrated between the target size and the risk of adverse events for single fraction radiosurgery.
Abstract: The literature is reviewed to identify the main clinical and dose-volume predictors for acute and late radiation-induced heart disease. A clear quantitative dose and/or volume dependence for most cardiac toxicity has not yet been shown, primarily because of the scarcity of the data. Several clinical factors, such as age, comorbidities and doxorubicin use, appear to increase the risk of injury. The existing dose-volume data is presented, as well as suggestions for future investigations to better define radiation-induced cardiac injury.

1,087 citations

Journal ArticleDOI
TL;DR: It is speculated that hexose-6-phosphate dehydrogenase activity and therefore reduced nicotinamide-adenine dinucleotide phosphate supply may be crucial in determining the directionality of 11beta-HSD1 activity.
Abstract: 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) interconverts inactive cortisone and active cortisol. Although bidirectional, in vivo it is believed to function as a reductase generating active glucocorticoid at a prereceptor level, enhancing glucocorticoid receptor activation. In this review, we discuss both the genetic and enzymatic characterization of 11beta-HSD1, as well as describing its role in physiology and pathology in a tissue-specific manner. The molecular basis of cortisone reductase deficiency, the putative "11beta-HSD1 knockout state" in humans, has been defined and is caused by intronic mutations in HSD11B1 that decrease gene transcription together with mutations in hexose-6-phosphate dehydrogenase, an endoluminal enzyme that provides reduced nicotinamide-adenine dinucleotide phosphate as cofactor to 11beta-HSD1 to permit reductase activity. We speculate that hexose-6-phosphate dehydrogenase activity and therefore reduced nicotinamide-adenine dinucleotide phosphate supply may be crucial in determining the directionality of 11beta-HSD1 activity. Therapeutic inhibition of 11beta-HSD1 reductase activity in patients with obesity and the metabolic syndrome, as well as in glaucoma and osteoporosis, remains an exciting prospect.

989 citations