scispace - formally typeset
Search or ask a question
Author

Robin H. A. Ras

Bio: Robin H. A. Ras is an academic researcher from Aalto University. The author has contributed to research in topics: Nanoclusters & Wetting. The author has an hindex of 49, co-authored 162 publications receiving 10196 citations. Previous affiliations of Robin H. A. Ras include Purdue University & University of Helsinki.


Papers
More filters
Journal ArticleDOI
TL;DR: While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future.
Abstract: Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future.

915 citations

Journal ArticleDOI
04 Jun 2020-Nature
TL;DR: It is suggested that this transparent, mechanically robust, self-cleaning glass could help to negate the dust-contamination issue that leads to a loss of efficiency in solar cells and could also guide the development of other materials that need to retain effective self- Cleaning, anti-fouling or heat-transfer abilities in harsh operating environments.
Abstract: The ability of superhydrophobic surfaces to stay dry, self-clean and avoid biofouling is attractive for applications in biotechnology, medicine and heat transfer1–10. Water droplets that contact these surfaces must have large apparent contact angles (greater than 150 degrees) and small roll-off angles (less than 10 degrees). This can be realized for surfaces that have low-surface-energy chemistry and micro- or nanoscale surface roughness, minimizing contact between the liquid and the solid surface11–17. However, rough surfaces—for which only a small fraction of the overall area is in contact with the liquid—experience high local pressures under mechanical load, making them fragile and highly susceptible to abrasion18. Additionally, abrasion exposes underlying materials and may change the local nature of the surface from hydrophobic to hydrophilic19, resulting in the pinning of water droplets to the surface. It has therefore been assumed that mechanical robustness and water repellency are mutually exclusive surface properties. Here we show that robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellency and a microstructure design to provide durability. The microstructure is an interconnected surface frame containing ‘pockets’ that house highly water-repellent and mechanically fragile nanostructures. This surface frame acts as ‘armour’, preventing the removal of the nanostructures by abradants that are larger than the frame size. We apply this strategy to various substrates—including silicon, ceramic, metal and transparent glass—and show that the water repellency of the resulting superhydrophobic surfaces is preserved even after abrasion by sandpaper and by a sharp steel blade. We suggest that this transparent, mechanically robust, self-cleaning glass could help to negate the dust-contamination issue that leads to a loss of efficiency in solar cells. Our design strategy could also guide the development of other materials that need to retain effective self-cleaning, anti-fouling or heat-transfer abilities in harsh operating environments. Water-repellent nanostructures are housed within an interconnected microstructure frame to yield mechanically robust superhydrophobic surfaces.

889 citations

Journal ArticleDOI
TL;DR: The different scaffolds that are used as stabilizer for silver nanoclusters (e.g. polymers, dendrimers, DNA oligomers, cryogenic noble gas matrixes, inorganic glasses, zeolites and nanoparticles) are overviewed.
Abstract: Silver nanoclusters are a class of fluorophores with attractive features, including brightness, photostability and subnanometer size. In this review we overview the different scaffolds that are used as stabilizer for silver nanoclusters (e.g. polymers, dendrimers, DNA oligomers, cryogenic noble gas matrixes, inorganic glasses, zeolites and nanoparticles), and we briefly discuss the recent advances.

747 citations

Journal ArticleDOI
TL;DR: By functionalizing the native cellulose nanofibrils of the aerogel with a hydrophobic but oleophilic coating, such as titanium dioxide, a selectively oil-absorbing material capable of floating on water is achieved.
Abstract: Highly porous nanocellulose aerogels can be prepared by vacuum freeze-drying from microfibrillated cellulose hydrogels. Here we show that by functionalizing the native cellulose nanofibrils of the aerogel with a hydrophobic but oleophilic coating, such as titanium dioxide, a selectively oil-absorbing material capable of floating on water is achieved. Because of the low density and the ability to absorb nonpolar liquids and oils up to nearly all of its initial volume, the surface modified aerogels allow to collect organic contaminants from the water surface. The materials can be reused after washing, recycled, or incinerated with the absorbed oil. The cellulose is renewable and titanium dioxide is not environmentally hazardous, thus promoting potential in environmental applications.

742 citations

Journal ArticleDOI
08 Apr 2016-Science
TL;DR: Identifying the most promising avenues to mechanically robust superhydrophobic materials calls for standardized characterization methods.
Abstract: Superhydrophobic surfaces have received rapidly increasing research interest since the late 1990s because of their tremendous application potential in areas such as self-cleaning and anti-icing surfaces, drag reduction, and enhanced heat transfer ( 1 – 3 ). A surface is considered superhydrophobic if a water droplet beads up (with contact angles >150°), and moreover, if the droplet can slide away from the surface readily (i.e., it has small contact angle hysteresis). Two essential features are generally required for superhydrophobicity: a micro- or nanostructured surface texture and a nonpolar surface chemistry, to help trap a thin air layer that reduces attractive interactions between the solid surface and the liquid ( 4 , 5 ). However, such surface textures are highly susceptible to mechanical wear, and abrasion may also alter surface chemistry. Both processes can lead to loss of liquid repellency, which makes mechanical durability a central concern for practical applications ( 6 , 7 ). Identifying the most promising avenues to mechanically robust superhydrophobic materials calls for standardized characterization methods.

571 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them, and summarizes cellulOSE nanoparticles in terms of particle morphology, crystal structure, and properties.
Abstract: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

4,920 citations

Journal ArticleDOI
TL;DR: This Review assembles the current knowledge on the isolation of microfibrillated cellulose from wood and its application in nanocomposites; the preparation of nanocrystalline cellulose and its use as a reinforcing agent; and the biofabrication of bacterial nanocellulose, as well as its evaluation as a biomaterial for medical implants.
Abstract: Cellulose fibrils with widths in the nanometer range are nature-based materials with unique and potentially useful features. Most importantly, these novel nanocelluloses open up the strongly expanding fields of sustainable materials and nanocomposites, as well as medical and life-science devices, to the natural polymer cellulose. The nanodimensions of the structural elements result in a high surface area and hence the powerful interaction of these celluloses with surrounding species, such as water, organic and polymeric compounds, nanoparticles, and living cells. This Review assembles the current knowledge on the isolation of microfibrillated cellulose from wood and its application in nanocomposites; the preparation of nanocrystalline cellulose and its use as a reinforcing agent; and the biofabrication of bacterial nanocellulose, as well as its evaluation as a biomaterial for medical implants.

3,452 citations

Journal ArticleDOI
TL;DR: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology as discussed by the authors, and a comprehensive overview of synthetic strategies for hollow structures is presented.
Abstract: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-/nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed.

2,767 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations