scispace - formally typeset
Search or ask a question
Author

Robin L. Shelton

Bio: Robin L. Shelton is an academic researcher from University of Georgia. The author has contributed to research in topics: Galactic halo & Local Bubble. The author has an hindex of 29, co-authored 97 publications receiving 3486 citations. Previous affiliations of Robin L. Shelton include University of Wisconsin-Madison & Johns Hopkins University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the results from this test program and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of these data and pre-launch laboratory measurements.
Abstract: The launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include the initial coalignment, focusing, and characterization of the four instrument channels and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of these data and prelaunch laboratory measurements.

494 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the results from this test program, and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of this data and pre-launch laboratory measurements.
Abstract: Launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include initial coalignment, focusing and characterization of the four instrument channels, and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program, and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of this data and prelaunch laboratory measurements.

471 citations

Journal ArticleDOI
TL;DR: In this article, the van der Laan mechanism is used to model the evolution of a supernova remnant in the Galactic plane at a distance of about 2500 pc, which is remarkably consistent with the simplest realistic model.
Abstract: We show that many observations of W44, a supernova remnant in the Galactic plane at a distance of about 2500 pc, are remarkably consistent with the simplest realistic model. The model remnant is evolving in a smooth ambient medium of fairly high density, about 6 cm-3 on average, with a substantial density gradient. At the observed time it has an age of about 20,000 yr, consistent with the age of the associated pulsar, and a radius of 11-13 pc. Over most of the outer surface, radiative cooling has become important in the postshock gas; on the denser end there has been sufficient compression of the cooled gas to develop a very thin dense half-shell of about 450 M☉, supported against further compression by nonthermal pressure. The half-shell has an expansion velocity of about 150 km s-1 and is bounded on the outer surface by a radiative shock with that speed. The deep interior of the remnant has a substantial and fairly uniform pressure, as expected from even highly idealized adiabatic models; our model, however, is never adiabatic. Thermal conduction, while the remnant is young and hot, reduces the need for expansion cooling and prevents formation of the intensely vacuous cavity characteristic of adiabatic evolution. It radically alters the interior structure from what one might expect from familiarity with the Sedov solution. At the time of observation, the temperature in the center is about 6 × 106 K, the density about 1 cm-3. The temperature decreases gradually away from the center, while the density rises. Farther out, where cooling is becoming important, the pressure drops precipitously, and the temperature in the denser gas there is quite low. We provide several analytic tools for the assembly of models of this type. We review the early evolution and shell formation analyses and their generalizations to evolution in a density gradient. We also calculate the density and temperature that should be present in the hot interior of a remnant with thermal conduction. We supply the van der Laan mechanism in a particularly useful form for the calculation of radio continuum from radiative remnants. Finally, we estimate the optical emission that should be present from fluorescence of UV light, emitted by the forming shell and the radiative shock and absorbed in the cold shell and the ambient medium, and the associated 63 μm [O I] emission. Both are in agreement with the intensity and spatial structures found in recent observations. Neither requires interaction with a dense molecular cloud for its generation. We calculate the gamma rays that should be emitted by cosmic-ray electrons and ions in the shell, interacting with the cold material, and find each capable of generating about 25% of the flux reported by EGRET for the vicinity.

205 citations

Journal ArticleDOI
TL;DR: In this article, the authors present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission.
Abstract: We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 ? 106 K, interquartile range = 0.63 ? 106 K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude (~(0.4-7) ? 10?3 cm?6 pc and ~(0.5-7) ? 10?12 erg cm?2 s?1 deg?2, respectively, with median detections of 1.9 ? 10?3 cm?6 pc and 1.5 ? 10?12 erg cm?2 s?1 deg?2, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.

109 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the ionization of the local interstellar medium is maintained by a strong EUV flux from nearby stars and hot gases, rather than an incomplete recovery from a past, more highly ionized condition.
Abstract: FUSE spectra of the white dwarf stars G191-B2B, GD 394, WD 2211-495 and WD 2331-475 cover the absorption features out of the ground electronic states of N I, N II, N III, O I and Ar I in the far ultraviolet, providing new insights on the origin of the partial ionization of the Local Interstellar Medium (LISM), and for the case of G191-B2B, the interstellar cloud that immediately surrounds the solar system. Toward these targets the interstellar abundances of Ar I, and sometimes N I, are significantly below their cosmic abundances relative to H I. In the diffuse interstellar medium, these elements are not likely to be depleted onto dust grains. Generally, we expect that Ar should be more strongly ionized than H (and also O and N whose ionizations are coupled to that of H via charge exchange reactions) because the cross section for the photoionization of Ar I is very high. Our finding that Ar I/H I is low may help to explain the surprisingly high ionization of He in the LISM found by other investigators. Our result favors the interpretation that the ionization of the local medium is maintained by a strong EUV flux from nearby stars and hot gases, rather than an incomplete recovery from a past, more highly ionized condition.

107 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress, and show that the Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo.
Abstract: Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be studied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated “green valley” region of the galaxy color-magnitude diagram. Here we review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamental role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations.

1,084 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe how pulsars steadily dissipate their rotational energy via relativistic winds. Confinement of these outflows generates luminous pulsar wind nebulae, seen across the electromagnetic spectrum in...
Abstract: Pulsars steadily dissipate their rotational energy via relativistic winds. Confinement of these outflows generates luminous pulsar wind nebulae, seen across the electromagnetic spectrum in ...

771 citations

Journal ArticleDOI
TL;DR: The Far Ultraviolet Spectroscopic Explorer (FUSSE Explorer) satellite observes light in the far-ultraviolet spectral region, 905-1187 Angstrom, with a high spectral resolution as discussed by the authors.
Abstract: The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905-1187 Angstrom, with a high spectral resolution The instrument consists of four co-aligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors Two of the telescope channels use Al :LiF coatings for optimum reflectivity between approximately 1000 and 1187 Angstrom, and the other two channels use SiC coatings for optimized throughput between 905 and 1105 Angstrom The gratings are holographically ruled to correct largely for astigmatism and to minimize scattered light The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal The sensitivity is sufficient to examine reddened lines of sight within the Milky Way and also sufficient to use as active galactic nuclei and QSOs for absorption-line studies of both Milky Way and extragalactic gas clouds This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I, and the strong electronic transitions of H-2 and HD

692 citations

Journal ArticleDOI
TL;DR: In this paper, the intrinsic UV and X-ray absorbers of active galaxies were studied with the assistance of monitoring observations and photoionization models to provide constraints on their kinematics] physical conditions.
Abstract: Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .

586 citations

Journal ArticleDOI
TL;DR: The circumgalactic medium (CGM) as mentioned in this paper is a multiphase medium characterized by rich dynamics and complex ionization states, and it is a source for a galaxy's star-forming fuel, the venue for galactic feedback and recycling, and perhaps the key regulator of the galactic gas supply.
Abstract: The gas surrounding galaxies outside their disks or interstellar medium and inside their virial radii is known as the circumgalactic medium (CGM). In recent years this component of galaxies has assumed an important role in our understanding of galaxy evolution owing to rapid advances in observational access to this diffuse, nearly invisible material. Observations and simulations of this component of galaxies suggest that it is a multiphase medium characterized by rich dynamics and complex ionization states. The CGM is a source for a galaxy's star-forming fuel, the venue for galactic feedback and recycling, and perhaps the key regulator of the galactic gas supply. We review our evolving knowledge of the CGM with emphasis on its mass, dynamical state, and coevolution with galaxies. Observations from all redshifts and from across the electromagnetic spectrum indicate that CGM gas has a key role in galaxy evolution. We summarize the state of this field and pose unanswered questions for future research.

546 citations