scispace - formally typeset
Search or ask a question
Author

Robin M. Murray

Bio: Robin M. Murray is an academic researcher from King's College London. The author has contributed to research in topics: Psychosis & Schizophrenia. The author has an hindex of 171, co-authored 1539 publications receiving 116362 citations. Previous affiliations of Robin M. Murray include University of Cambridge & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: D dopamine sensitization plays a central role in explaining the association between psychostimulants and cannabis on the one hand and schizophrenia on the other, in that its development underlies both a craving for drugs and the positive symptoms of schizophrenia.
Abstract: Drugs that release dopamine, such as amphetamines and cocaine, have long been known to be associated with schizophrenia. As Professor Stefanis pointed out many years ago, people with schizophrenia also commonly consume cannabis, which, like the psychostimulants, also enhances dopaminergic activity.

21 citations

Journal ArticleDOI
TL;DR: For instance, this article found that of 181 psychiatric patients interviewed, 16 (8.8%) had consumed a total of more than 1 kg of aspirin or phenacetin, and a further 26 (14.4%) admitted to daily analgesic ingestion for the previous six months.

21 citations

06 Mar 2014
TL;DR: This paper performed a GWAS of schizophrenia as a broad syndrome rather than within specific diagnostic categories and found that SNPs conveying risk for schizophrenia are also predictive of disease status in their data.
Abstract: Background Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. Methods 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). Results No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium’s panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10–14) and explained approximately 2% of the phenotypic variance. Conclusions Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data.

21 citations

Journal ArticleDOI
TL;DR: It is suggested that continued use of high-potency cannabis following the onset of psychosis may adversely affect medication adherence.
Abstract: Uncertainty exists whether the use of non-prescription psychoactive substances following onset of a first episode of psychosis (FEP), in particular cannabis use, affects medication adherence. Data from FEP patients (N=233) obtained through prospective assessments measured medication adherence and pattern of cannabis and other substance use in the first two years following onset of psychosis. Multiple logistic regression analyses were employed to compare the different substance use groups with regard to risk of medication non-adherence, while controlling for confounders. The proportion of non-adherent patients was higher in those who continued using high-potency forms of cannabis (skunk-like) following the onset (83%) when compared to never regular users (51%), corresponding to an Odds Ratio (OR) of 5.26[95% Confidence Interval (CI) 1.91-15.68]. No significant increases in risk were present in those who used cannabis more sporadically or used milder forms of cannabis (hash-like). Other substances did not make an independent contribution in this model, including cigarette use ([OR 0.88, 95% CI 0.41-1.89]), alcohol use ([OR 0.66, 95% CI 0.27-1.64]) or regular use of other illicit drugs ([OR 1.03, 95% CI 0.34-3.15]) following the onset. These results suggest that continued use of high-potency cannabis following the onset of psychosis may adversely affect medication adherence.

21 citations

Journal ArticleDOI
TL;DR: Effective management of schizophrenia must ensure that the physical health of patients is addressed together with their mental health, and should involve consideration of the specific tolerability profiles of available agents and individualization of treatment to minimize the likelihood of adverse metabolic sequelae, thereby improving long-term adherence and optimizing overall treatment outcomes.
Abstract: Available evidence suggests that second-generation atypical antipsychotics are broadly similar to first-generation agents in terms of their efficacy, but may have a more favourable tolerability profile, primarily by being less likely to cause extrapyramidal symptoms. However, atypical antipsychotics are variably associated with disturbances in the cardiometabolic arena, including increased body weight and the development of metabolic syndrome, which may reflect differences in their receptor binding profiles. Effective management of schizophrenia must ensure that the physical health of patients is addressed together with their mental health. This should therefore involve consideration of the specific tolerability profiles of available agents and individualization of treatment to minimize the likelihood of adverse metabolic sequelae, thereby improving long-term adherence and optimizing overall treatment outcomes. Alongside this, modifiable risk factors (such as exercise, diet, obesity/body weight and smoking status) must be addressed, in order to optimize patients' overall health and quality of life (QoL). In addition to antipsychotic-induced side effects, the clinical management of early nonresponders and psychopharmacological approaches for patients with treatment-resistant schizophrenia remain important unmet needs. Evidence suggests that antipsychotic response starts early in the course of treatment and that early nonresponse accurately predicts nonresponse over the longer term. Early nonresponse therefore represents an important modifiable risk factor for poor efficacy and effectiveness outcomes, since switching or augmenting antipsychotic treatment in patients showing early nonresponse has been shown to improve the likelihood of subsequent treatment outcomes. Recent evidence has also demonstrated that patients showing early nonresponse to treatment with lurasidone at 2 weeks may benefit from an increase in dose at this timepoint without compromising tolerability/safety. However, further research is required to determine whether these findings are generalizable to other antipsychotic agents.

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The AUDIT provides a simple method of early detection of hazardous and harmful alcohol use in primary health care settings and is the first instrument of its type to be derived on the basis of a cross-national study.
Abstract: The Alcohol Use Disorders Identification Test (AUDIT) has been developed from a six-country WHO collaborative project as a screening instrument for hazardous and harmful alcohol consumption. It is a 10-item questionnaire which covers the domains of alcohol consumption, drinking behaviour, and alcohol-related problems. Questions were selected from a 150-item assessment schedule (which was administered to 1888 persons attending representative primary health care facilities) on the basis of their representativeness for these conceptual domains and their perceived usefulness for intervention. Responses to each question are scored from 0 to 4, giving a maximum possible score of 40. Among those diagnosed as having hazardous or harmful alcohol use, 92% had an AUDIT score of 8 or more, and 94% of those with non-hazardous consumption had a score of less than 8. AUDIT provides a simple method of early detection of hazardous and harmful alcohol use in primary health care settings and is the first instrument of its type to be derived on the basis of a cross-national study.

11,042 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

9,700 citations

01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations