scispace - formally typeset
Search or ask a question
Author

Rocfo Ponce Ortiz

Bio: Rocfo Ponce Ortiz is an academic researcher from Northwestern University. The author has contributed to research in topics: Field-effect transistor & Organic electronics. The author has an hindex of 1, co-authored 1 publications receiving 730 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A comparison study of high-k Dielectric Materials for OFETs using self-Assembled Monoand Multilayers and Inorganic-Organic Bilayers to study the properties of polymeric-Nanoparticle Composites.
Abstract: 2.2. Interface Trapping Effects 211 3. High-k Dielectric Materials for OFETs 212 3.1. Inorganic Dielectrics 212 3.1.1. Aluminum Oxide 213 3.1.2. Tantalum Oxide 215 3.1.3. Titanium Dioxide 216 3.1.4. Hafnium Dioxide 217 3.1.5. Zirconium Dioxide 218 3.1.6. Cerium Dioxide 218 3.2. Organic Dielectrics 218 3.2.1. Polymer Dielectrics 218 3.2.2. Self-Assembled Monoand Multilayers 225 3.3. Hybrid Dielectrics 227 3.3.1. Polymeric-Nanoparticle Composites 227 3.3.2. Inorganic-Organic Bilayers 232 3.3.3. Hybrid Solid Polymer Electrolytes 235 4. Summary 235 5. Acknowledgments 236 6. References 236

788 citations


Cited by
More filters
Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations

Journal ArticleDOI
TL;DR: In this article, a review of π-conjugated polymeric semiconductors for organic thin-film (or field effect) transistors (OTFTs or OFETs) and bulk-heterojunction photovoltaic (or solar) cell (BHJ-OPV or OSC) applications are summarized and analyzed.
Abstract: The optoelectronic properties of polymeric semiconductor materials can be utilized for the fabrication of organic electronic and photonic devices. When key structural requirements are met, these materials exhibit unique properties such as solution processability, large charge transporting capabilities, and/or broad optical absorption. In this review recent developments in the area of π-conjugated polymeric semiconductors for organic thin-film (or field-effect) transistors (OTFTs or OFETs) and bulk-heterojunction photovoltaic (or solar) cell (BHJ-OPV or OSC) applications are summarized and analyzed.

2,076 citations

Journal ArticleDOI
TL;DR: This Review presents a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications.
Abstract: Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers...

1,143 citations

Journal ArticleDOI
TL;DR: Combustion processing is now reported as a new low-temperature route for the deposition of diverse metal oxide films, and high-performance transistors are demonstrated using this method as discussed by the authors.
Abstract: Solution-deposited metal oxides show great potential for large-area electronics, but they generally require high annealing temperatures, which are incompatible with flexible polymeric substrates. Combustion processing is now reported as a new low-temperature route for the deposition of diverse metal oxide films, and high-performance transistors are demonstrated using this method.

1,078 citations

Journal ArticleDOI
TL;DR: An extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples is presented.
Abstract: In the last three decades, zero-dimensional, one-dimensional, and two-dimensional carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and graphene, respectively) have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical, and chemical properties. While early work showed that these properties could enable high performance in selected applications, issues surrounding structural inhomogeneity and imprecise assembly have impeded robust and reliable implementation of carbon nanomaterials in widespread technologies. However, with recent advances in synthesis, sorting, and assembly techniques, carbon nanomaterials are experiencing renewed interest as the basis of numerous scalable technologies. Here, we present an extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples. Specific attention is devoted to each class of carbon nanomaterial, thereby allowing comparative analysis of the suitability of fullerenes, carbon nanotubes, and graphene for each application area. In this manner, this article will provide guidance to future application developers and also articulate the remaining research challenges confronting this field.

958 citations