scispace - formally typeset
Search or ask a question
Author

Rod Balhorn

Bio: Rod Balhorn is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Protamine & Sperm. The author has an hindex of 44, co-authored 104 publications receiving 6585 citations.
Topics: Protamine, Sperm, Chromatin, Histone, DNA


Papers
More filters
Journal ArticleDOI
TL;DR: Comparison of protamine gene and amino-acid sequences suggests that the family evolved from specialized histones through protamine-like proteins to the true protamines.
Abstract: The protamines are a diverse family of small arginine-rich proteins that are synthesized in the late-stage spermatids of many animals and plants and bind to DNA, condensing the spermatid genome into a genetically inactive state. Vertebrates have from one to 15 protamine genes per haploid genome, which are clustered together on the same chromosome. Comparison of protamine gene and amino-acid sequences suggests that the family evolved from specialized histones through protamine-like proteins to the true protamines. Structural elements present in all true protamines are a series of arginine-rich DNA-anchoring domains (often containing a mixture of arginine and lysine residues in non-mammalian protamines) and multiple phosphorylation sites. The two protamines found in mammals, P1 and P2, are the most widely studied. P1 packages sperm DNA in all mammals, whereas protamine P2 is present only in the sperm of primates, many rodents and a subset of other placental mammals. P2, but not P1, is synthesized as a precursor that undergoes proteolytic processing after binding to DNA and also binds a zinc atom, the function of which is not known. P1 and P2 are phosphorylated soon after their synthesis, but after binding to DNA most of the phosphate groups are removed and cysteine residues are oxidized, forming disulfide bridges that link the protamines together. Both P1 and P2 have been shown to be required for normal sperm function in primates and many rodents.

612 citations

Journal ArticleDOI
22 May 1987-Science
TL;DR: The existence of sequence-specific nucleohistone and nucleoprotamine components within the human spermatozoon was demonstrated by cloning size-selected single-copy sequences and by using the derived clones as probes of nucleohistsone DNA and nucleobrotamine DNA.
Abstract: The DNA in human sperm chromatin is packaged into nucleoprotamine (approximately 85%) and nucleohistone (approximately 15%). Whether these two chromatin fractions are sequence-specific subsets of the spermatozoon genome is the question addressed in this report. Sequence-specific packaging would suggest distinct structural and functional roles for the nucleohistone and nucleoprotamine in late spermatogenesis or early development or both. After removal of histones with 0.65M NaCl, exposed DNA was cleaved with Bam HI restriction endonuclease and separated by centrifugation from insoluble nucleoprotamine. The DNA sequence distribution of nucleohistone DNA in the supernatant and nucleoprotamine DNA in the pellet was compared by cloning size-selected single-copy sequences and by using the derived clones as probes of nucleohistone DNA and nucleoprotamine DNA. Two clones derived from nucleohistone DNA preferentially hybridized to nucleohistone DNA, and two clones derived from nucleoprotamine DNA preferentially hybridized to nucleoprotamine DNA, which demonstrated the existence of sequence-specific nucleohistone and nucleoprotamine components within the human spermatozoon.

380 citations

Journal ArticleDOI
18 Jan 2001-Nature
TL;DR: It is shown that unwinding is both continuous and processive, occurring at a maximum rate of 972 ± 172 base pairs per second, with as many as 42,300 base pairs of dsDNA unwound by a single RecBCD enzyme molecule.
Abstract: RecBCD enzyme is a processive DNA helicase1 and nuclease2 that participates in the repair of chromosomal DNA through homologous recombination3,4. We have visualized directly the movement of individual RecBCD enzymes on single molecules of double-stranded DNA (dsDNA). Detection involves the optical trapping of solitary, fluorescently tagged dsDNA molecules that are attached to polystyrene beads, and their visualization by fluorescence microscopy5,6. Both helicase translocation and DNA unwinding are monitored by the displacement of fluorescent dye from the DNA by the enzyme7. Here we show that unwinding is both continuous and processive, occurring at a maximum rate of 972 ± 172 base pairs per second (0.30 µm s-1), with as many as 42,300 base pairs of dsDNA unwound by a single RecBCD enzyme molecule. The mean behaviour of the individual RecBCD enzyme molecules corresponds to that observed in bulk solution.

333 citations

Journal ArticleDOI
TL;DR: The distribution of protamines in sperm obtained from a select group of infertile males producing an elevated level of large sperm heads, in contrast, was different from that of the fertile males.
Abstract: Protamines were extracted from the sperm of fertile and infertile human males and the relative proportion of protamines 1, 2, and 3 were determined by scanning microdensitometry following electrophoresis of total protamine in polyacrylamide gels. The proportion of the three protamines was found to be similar in sperm obtained from different normal males. The distribution of protamines in sperm obtained from a select group of infertile males producing an elevated level of large sperm heads, in contrast, was different from that of the fertile males.

279 citations

Journal ArticleDOI
01 Oct 1999-Science
TL;DR: Condensation and decondensation experiments with lambda-phage DNA show that toroid formation and stability are influenced by the number of arginine-rich anchoring domains in protamine, and suggest that these proteins must be actively removed from sperm chromatin after fertilization.
Abstract: The DNA in sperm and certain viruses is condensed by arginine-rich proteins into toroidal subunits, a form of packaging that inactivates their entire genome. Individual DNA molecules were manipulated with an optical trap to examine the kinetics of torus formation induced by the binding of protamine and a subset of its DNA binding domain, Arg6. Condensation and decondensation experiments with λ-phage DNA show that toroid formation and stability are influenced by the number of arginine-rich anchoring domains in protamine. The results explain why protamines contain so much arginine and suggest that these proteins must be actively removed from sperm chromatin after fertilization.

256 citations


Cited by
More filters
Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
TL;DR: Results clearly indicate that TSA is a potent and specific inhibitor of the histone deacetylase and that the in vivo effect of TSA on cell proliferation and differentiation can be attributed to the inhibition of the enzyme.

1,897 citations

Journal ArticleDOI
01 Oct 1971-Nature
TL;DR: Lipson and Steeple as mentioned in this paper interpreted X-ray powder diffraction patterns and found that powder-diffraction patterns can be represented by a set of 3-dimensional planes.
Abstract: Interpretation of X-ray Powder Diffraction Patterns . By H. Lipson and H. Steeple. Pp. viii + 335 + 3 plates. (Mac-millan: London; St Martins Press: New York, May 1970.) £4.

1,867 citations

Journal ArticleDOI
23 Jan 2003-Nature
TL;DR: The basic features of DNA were elucidated during the half-century following the discovery of the double helix, but it is only during the past decade that researchers have been able to manipulate single molecules of DNA to make direct measurements of its mechanical properties.
Abstract: The basic features of DNA were elucidated during the half-century following the discovery of the double helix. But it is only during the past decade that researchers have been able to manipulate single molecules of DNA to make direct measurements of its mechanical properties. These studies have illuminated the nature of interactions between DNA and proteins, the constraints within which the cellular machinery operates, and the forces created by DNA-dependent motors.

1,254 citations