scispace - formally typeset
Search or ask a question
Author

Rodger Staden

Other affiliations: Medical Research Council
Bio: Rodger Staden is an academic researcher from Laboratory of Molecular Biology. The author has contributed to research in topics: File format & DNA sequencing. The author has an hindex of 26, co-authored 33 publications receiving 7774 citations. Previous affiliations of Rodger Staden include Medical Research Council.

Papers
More filters
Journal ArticleDOI
TL;DR: The current version of the sequence analysis package developed at the MRC Laboratory of Molecular Biology is described, which has come to be known as the “Staden Package,” and provides powerful tools for DNA sequence determination.
Abstract: I describe the current version of the sequence analysis package developed at the MRC Laboratory of Molecular Biology, which has come to be known as the “Staden Package.” The package covers most of the standard sequence analysis tasks such as restriction site searching, translation, pattern searching, comparison, gene finding, and secondary structure prediction, and provides powerful tools for DNA sequence determination. Currently the programs are only available for computers running the UNIX operating system. Detailed information about the package is available from our WWW site: http://www.mrc-lmb.cam.ac.uk/pubseq/.

1,262 citations

Journal ArticleDOI
TL;DR: The Genome Assembly Program (GAP), a new program for DNA sequence assembly, is described, which retains the useful components of the previous work, but includes many novel ideas and methods.
Abstract: We describe the Genome Assembly Program (GAP), a new program for DNA sequence assembly. The program is suitable for large and small projects, a variety of strategies and can handle data from a range of sequencing instruments. It retains the useful components of our previous work, but includes many novel ideas and methods. Many of these methods have been made possible by the program's completely new, and highly interactive, graphical user interface. The program provides many visual clues to the current state of a sequencing project and allows users to interact in intuitive and graphical ways with their data. The program has tools to display and manipulate the various types of data that help to solve and check difficult assemblies, particularly those in repetitive genomes. We have introduced the following new displays: the Contig Selector, the Contig Comparator, the Template Display, the Restriction Enzyme Map and the Stop Codon Map. We have also made it possible to have any number of Contig Editors and Contig Joining Editors running simultaneously even on the same contig. The program also includes a new 'Directed Assembly' algorithm and routines for automatically detecting unfinished segments of sequence, to which it suggests experimental solutions.

951 citations

Journal ArticleDOI
TL;DR: A computer program designed to look for similarities between pairs of nucleic or amino acid sequences and can use inbuilt editing functions to make insertions to produce alignments of the two sequences.
Abstract: This paper describes a computer program designed to look for similarities between pairs of nucleic or amino acid sequences. The program looks both for segments of perfect identity or for regions where, using a scoring matrix, a minimum value is exceeded. The results of comparisons are presented as a matrix which is displayed on a simple graphics terminal. Use of a graphics terminal allows the user to display the whole of the two sequences in one screenful or to home-in on regions of interest to examine them in more detail. The program is interactive and so the user can easily see the effect of changes to variables and can use inbuilt editing functions to make insertions to produce alignments of the two sequences. These aligned sequences can then be saved on disk files for further processing.

663 citations

Journal ArticleDOI
TL;DR: The methods are of use both to those trying to interpret the function of newly determined sequences and to those studying the molecular mechanisms involved in the recognition of these special signal sequences.
Abstract: This paper describes computer methods for locating signals in nucleic acid sequences The signals include ribosome binding sites, promoter sequences and splice junctions The methods are of use both to those trying to interpret the function of newly determined sequences and to those studying the molecular mechanisms involved in the recognition of these special signal sequences

647 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: To their surprise, it was found that double-stranded RNA was substantially more effective at producing interference than was either strand individually, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Abstract: Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression Here we investigate the requirements for structure and delivery of the interfering RNA To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference The effects of this interference were evident in both the injected animals and their progeny Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process

15,374 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.

11,932 citations

Journal ArticleDOI
TL;DR: A program is described, tRNAscan-SE, which identifies 99-100% of transfer RNA genes in DNA sequence while giving less than one false positive per 15 gigabases.
Abstract: We describe a program, tRNAscan-SE, which identifies 99-100% of transfer RNA genes in DNA sequence while giving less than one false positive per 15 gigabases. Two previously described tRNA detection programs are used as fast, first-pass prefilters to identify candidate tRNAs, which are then analyzed by a highly selective tRNA covariance model. This work represents a practical application of RNA covariance models, which are general, probabilistic secondary structure profiles based on stochastic context-free grammars. tRNAscan-SE searches at approximately 30 000 bp/s. Additional extensions to tRNAscan-SE detect unusual tRNA homologues such as selenocysteine tRNAs, tRNA-derived repetitive elements and tRNA pseudogenes.

9,629 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations