scispace - formally typeset
Search or ask a question
Author

Rodney J. Ouellette

Bio: Rodney J. Ouellette is an academic researcher. The author has contributed to research in topics: Receptor & Cell type. The author has an hindex of 3, co-authored 3 publications receiving 148 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that 5-HT plays a mitogenic role in neoplastic mammary cells and exerts this positive growth effect on MCF-7 cells through, in part, the 5- HT(2A) receptor subtype, which is fully expressed in this cell line.

71 citations

Journal ArticleDOI
01 Jul 2005-Placenta
TL;DR: It is demonstrated that the 5-HT(2A) receptor subtype is fully expressed in the human choriocarcinoma cell lines JEG-3 and BeWo as well as in normal human placental tissue, and DNA sequencing has confirmed that this receptor present in these cell lines and tissues is identical to the human 5-hydroxytryptamine receptor found in platelets and in the cerebral cortex.

50 citations

Journal ArticleDOI
TL;DR: These results demonstrate, for the first time, the expression of melatonin receptors in human term placental tissues and in choriocarcinoma cells and suggest a possible paracrine/autocrine function for melatonin in human placenta.
Abstract: Lanoix D, Ouellette R, Vaillancourt C. Melatonin crosses the placenta and enters the fetal circulation. Moreover, experimental data suggest a possible influence of melatonin on placental function and fetal development in humans. To date, the expression and role of melatonin receptors in human placenta choriocarcinoma cell lines and in human term placental tissues remain to be elucidated. METHODS AND RESULTS : Results from RT-PCR, western blotting and confocal microscopy demonstrated that the (...)

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An approach that combines repurposed pharmaceutical agents with other therapeutics has shown promising results in mitigating tumour burden, and this systematic review discusses important pathways commonly targeted in cancer therapy.
Abstract: // Reza Bayat Mokhtari 1,2,4 , Tina S. Homayouni 1 , Narges Baluch 3 , Evgeniya Morgatskaya 1 , Sushil Kumar 1 , Bikul Das 4 and Herman Yeger 1,2 1 Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada 2 Department of Paediatric Laboratory Medicine, The Hospital for Sick Children and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada 3 Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada 4 Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA Correspondence to: Herman Yeger, email: // Reza Bayat Mokhtari, email: // Keywords : Nrf2-Keap1, HIF-1alpha, carbonic anhydrase 9 (CAIX), histone deacetylase inhibitor (HDACi), carbonic anhydrase inhibitor (CAI) Received : October 19, 2016 Accepted : February 27, 2017 Published : March 30, 2017 Abstract Combination therapy, a treatment modality that combines two or more therapeutic agents, is a cornerstone of cancer therapy. The amalgamation of anti-cancer drugs enhances efficacy compared to the mono-therapy approach because it targets key pathways in a characteristically synergistic or an additive manner. This approach potentially reduces drug resistance, while simultaneously providing therapeutic anti-cancer benefits, such as reducing tumour growth and metastatic potential, arresting mitotically active cells, reducing cancer stem cell populations, and inducing apoptosis. The 5-year survival rates for most metastatic cancers are still quite low, and the process of developing a new anti-cancer drug is costly and extremely time-consuming. Therefore, new strategies that target the survival pathways that provide efficient and effective results at an affordable cost are being considered. One such approach incorporates repurposing therapeutic agents initially used for the treatment of different diseases other than cancer. This approach is effective primarily when the FDA-approved agent targets similar pathways found in cancer. Because one of the drugs used in combination therapy is already FDA-approved, overall costs of combination therapy research are reduced. This increases cost efficiency of therapy, thereby benefiting the “medically underserved”. In addition, an approach that combines repurposed pharmaceutical agents with other therapeutics has shown promising results in mitigating tumour burden. In this systematic review, we discuss important pathways commonly targeted in cancer therapy. Furthermore, we also review important repurposed or primary anti-cancer agents that have gained popularity in clinical trials and research since 2012.

1,270 citations

Journal ArticleDOI
TL;DR: The presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans is emphasized and information related to its peripheral production and regulation of this ubiquitously acting indoleamine is compiled.
Abstract: Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.

757 citations

Journal ArticleDOI
TL;DR: Control of electron flux, prevention of bottlenecks in the respiratory chain and electron leakage contribute to the avoidance of damage by free radicals and seem to be important in neuroprotection, inflammatory diseases and, presumably, aging.

709 citations

Journal ArticleDOI
TL;DR: Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes.

538 citations

Journal ArticleDOI
TL;DR: The results raise the possibility of a causal relationship between angiogenesis and neurogenesis, as seen in other proliferating tissues, and support their possible role in the mechanism of action of antidepressants.

281 citations