scispace - formally typeset
Search or ask a question
Author

Rodney Loudon

Bio: Rodney Loudon is an academic researcher from University of Essex. The author has contributed to research in topics: Light scattering & Quantum optics. The author has an hindex of 11, co-authored 12 publications receiving 5548 citations.

Papers
More filters
Book
01 Jan 1973
TL;DR: In this paper, the Planck's radiation law and the Einstein coefficients were used to describe the atom-radiation interaction and the quantum mechanics of optical fluctuations and coherence, respectively.
Abstract: Preface 1. Planck's radiation law and the Einstein coefficients 2. Quantum mechanics of the atom-radiation interaction 3. Classical theory of optical fluctuations and coherence 4. Quantization of the radiation field 5. Single-mode quantum optics 6. Multimode and continuous-mode quantum optics 7. Optical generation, attenuation and amplification 8. Resonance fluorescence and light scattering 9. Nonlinear quantum optics Index

3,038 citations

Book
01 Jan 1983
TL;DR: In this paper, the Planck's radiation law and the Einstein coefficients were used to describe the atom-radiation interaction and the quantum mechanics of optical fluctuations and coherence, respectively.
Abstract: Preface 1. Planck's radiation law and the Einstein coefficients 2. Quantum mechanics of the atom-radiation interaction 3. Classical theory of optical fluctuations and coherence 4. Quantization of the radiation field 5. Single-mode quantum optics 6. Multimode and continuous-mode quantum optics 7. Optical generation, attenuation and amplification 8. Resonance fluorescence and light scattering 9. Nonlinear quantum optics Index

818 citations

Book
01 Jan 1978

778 citations

Journal ArticleDOI
TL;DR: In this paper, the quantum-mechanical system which consists of a particle in one dimension subjected to a Coulomb attraction (the one-dimensional hydrogen atom) is shown to have a ground state of infinite binding energy, all the excited bound states of the system having a twofold degeneracy.
Abstract: The quantum-mechanical system which consists of a particle in one dimension subjected to a Coulomb attraction (the one-dimensional hydrogen atom) is shown to have a ground state of infinite binding energy, all the excited bound states of the system having a twofold degeneracy. The breakdown of the theorem that a one-dimensional system cannot have degeneracy is examined. The treatment illustrates a number of properties common to the quantum mechanics of one-dimensional systems.

455 citations

01 Jan 1973
TL;DR: In this article, the Planck's radiation law and the Einstein coefficients were used to describe the atom-radiation interaction and the quantum mechanics of optical fluctuations and coherence, respectively.
Abstract: Preface 1. Planck's radiation law and the Einstein coefficients 2. Quantum mechanics of the atom-radiation interaction 3. Classical theory of optical fluctuations and coherence 4. Quantization of the radiation field 5. Single-mode quantum optics 6. Multimode and continuous-mode quantum optics 7. Optical generation, attenuation and amplification 8. Resonance fluorescence and light scattering 9. Nonlinear quantum optics Index

248 citations


Cited by
More filters
Book ChapterDOI
16 Nov 1992
TL;DR: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease as mentioned in this paper, where OCT is an interferometric technique that detects reflected and backscattered light from tissue.
Abstract: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic tissue after therapy. The OCT images provide an advantageous combination of resolution and penetration depth, but specific studies of diagnostic sensitivity and specificity in dermatology are sparse. In order to improve OCT image quality and expand the potential of OCT, technical developments are necessary. It is suggested that the technology will be of particular interest to the routine follow-up of patients undergoing non-invasive therapy of malignant or premalignant keratinocyte tumours. It is speculated that the continued technological development can propel the method to a greater level of dermatological use.

6,095 citations

Journal ArticleDOI
TL;DR: In this paper, the experimentally measured value of the magnetic dipole moment of the muon was compared with the theoretical prediction of 233,183,478, and 308, respectively.
Abstract: Quantum field theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the standard model, are formulated. Quantum electrodynamics (QED), besides providing a complete foundation for atomic physics and chemistry, has supported calculations of physical quantities with unparalleled precision. The experimentally measured value of the magnetic dipole moment of the muon, $${\left({{g_\mu } - 2} \right)_{\exp }} = 233\,184\,600\,\left({1680} \right) \times {10^{ - 11}},$$ for example, should be compared with the theoretical prediction $${\left({{g_\mu } - 2} \right)_{{\rm{theor}}}} = 233\,183\,478\,\left( {308} \right) \times {10^{ - 11}}$$ (see the chapter by Hughes and Kinoshita on pp. 223-233 in this book).

2,529 citations

Journal ArticleDOI
TL;DR: Theoretical and experimental work on radio-frequency (Paul) traps is reviewed in this paper, with a focus on ions trapped in radiofrequency traps, which are ideal for quantum-optical and quantum-dynamical studies under well controlled conditions.
Abstract: Single trapped ions represent elementary quantum systems that are well isolated from the environment. They can be brought nearly to rest by laser cooling, and both their internal electronic states and external motion can be coupled to and manipulated by light fields. This makes them ideally suited for quantum-optical and quantum-dynamical studies under well-controlled conditions. Theoretical and experimental work on these topics is reviewed in the paper, with a focus on ions trapped in radio-frequency (Paul) traps.

2,406 citations

Journal ArticleDOI
TL;DR: Graphene plasmons have been proposed as a platform for strongly enhanced light-matter interactions in this paper, where the authors predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, observable vacuum Rabi splittings, and extinction cross sections exceeding the geometrical area in graphene nanoribbons and nanodisks.
Abstract: Graphene plasmons provide a suitable alternative to noble-metal plasmons because they exhibit much tighter confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic gating. Here, we propose to use graphene plasmons as a platform for strongly enhanced light–matter interactions. Specifically, we predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, observable vacuum Rabi splittings, and extinction cross sections exceeding the geometrical area in graphene nanoribbons and nanodisks. Our theoretical results provide the basis for the emerging and potentially far-reaching field of graphene plasmonics, offering an ideal platform for cavity quantum electrodynamics, and supporting the possibility of single-molecule, single-plasmon devices.

2,379 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an in-depth study of surface enhanced Raman scattering (SERS) enhancement factors and cross-sections, including several issues often overlooked, and demonstrate that SERS EFs as low as 107, as opposed to the figure of 1014 often claimed in the literature, are sufficient for SERS applications.
Abstract: This paper presents an in-depth study of Surface Enhanced Raman Scattering (SERS) enhancement factors (EFs) and cross-sections, including several issues often overlooked. In particular, various possible rigorous definitions of the SERS EFs are introduced and discussed in the context of SERS applications, such as analytical chemistry and single molecule SERS. These definitions highlight the importance of a careful characterization of the non-SERS cross-sections of the probes under consideration. This aspect is illustrated by experimental results for the non-SERS cross-sections of representative SERS probes along with average SERS EFs for the same probes. In addition, the accurate experimental determination of single molecule enhancement factors is tackled with two recently developed techniques, namely: bi-analyte SERS (BiASERS) and temperature-dependent SERS vibrational pumping. We demonstrate that SERS EFs as low as 107, as opposed to the figure of 1014 often claimed in the literature, are sufficient for...

2,298 citations