scispace - formally typeset
Search or ask a question
Author

Rodney S. Ruoff

Bio: Rodney S. Ruoff is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 164, co-authored 666 publications receiving 194902 citations. Previous affiliations of Rodney S. Ruoff include Texas State University & North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of residues introduced during the transfer of chemical vapor deposited graphene from a Cu substrate to an insulating (SiO2) substrate on the physical and electrical properties of the transferred graphene are studied X-ray photoelectron spectroscopy and atomic force microscopy.
Abstract: The effects of residues introduced during the transfer of chemical vapor deposited graphene from a Cu substrate to an insulating (SiO2) substrate on the physical and electrical of the transferred graphene are studied X-ray photoelectron spectroscopy and atomic force microscopy show that this residue can be substantially reduced by annealing in vacuum The impact of the removal of poly(methyl methacrylate) residue on the electrical properties of graphene field effect devices is demonstrated, including a nearly 2 × increase in average mobility from 1400 to 2700 cm2/Vs The electrical results are compared with graphene doping measurements by Raman spectroscopy

936 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the production of aqueous suspensions of chemically modified graphene sheets, and electrically conductive "paper-like" material made from filtering such suspensions.
Abstract: We report the production of aqueous suspensions of chemically modified graphene sheets, and electrically conductive “paperlike” material made from filtering such suspensions.

925 citations

Journal ArticleDOI
TL;DR: In this article, spongy graphene (SG), a shape-mouldable and nanoporous material with a high specific surface area used as a versatile and recyclable sorbent material, is proposed and studied.
Abstract: In this work, spongy graphene (SG), a shape-mouldable and nanoporous material with a high specific surface area used as a versatile and recyclable sorbent material, is proposed and studied. SG shows highly efficient absorption of not only petroleum products and fats, but also toxic solvents such as toluene and chloroform (up to 86 times of its own weight), requiring no further pretreatment, which is tens of times higher than that of conventional absorbers. Moreover, SG can be regenerated (>10 times) by heat treatment, yielding the full release of adsorbates (>99%). The present work suggests SG a widespread potential for applications in industry as well as topics regarding environmental protection.

915 citations

Journal ArticleDOI
TL;DR: Flexible and lightweight chemiresistormade of a thin film composed of overlapped and reduced graphene oxide platelets (RGO film) that can reversibly and selectively detect chemicallyaggressive vapors such asNO.
Abstract: Described herein is a flexible and lightweight chemiresistormade of a thin film composed of overlapped and reducedgraphene oxide platelets (RGO film), which were printedonto flexible plastic surfaces by using inkjet techniques. TheRGO films can reversibly and selectively detect chemicallyaggressivevapors suchasNO

912 citations

Journal ArticleDOI
TL;DR: In this article, the fracture behavior of carbon nanotubes is studied by molecular mechanics simulations and it is found that fracture behavior is almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential.
Abstract: The fracture of carbon nanotubes is studied by molecular mechanics simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The fracture strain of a zigzag nanotube is predicted to be between 10% and 15%, which compares reasonably well with experimental results. The predicted range of fracture stresses is 65--93 GPa and is markedly higher than observed. The computed fracture strengths of chiral and armchair nanotubes are above these values. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle.

909 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations