scispace - formally typeset
Search or ask a question
Author

Rodney S. Ruoff

Bio: Rodney S. Ruoff is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 164, co-authored 666 publications receiving 194902 citations. Previous affiliations of Rodney S. Ruoff include Texas State University & North Carolina State University.


Papers
More filters
Proceedings ArticleDOI
23 Jun 2013
TL;DR: In this paper, the authors report a flexible transistors based on 2D atomic sheets such as graphene and MoS2 that features record electrical-mechanical properties and offer the highest prospects for realizing Si-CMOS like performance on arbitrary plastic substrates.
Abstract: The authors report a flexible transistors based on 2D atomic sheets such as graphene and MoS2 that features record electrical-mechanical properties and offer the highest prospects for realizing Si-CMOS like performance on arbitrary plastic substrates. Graphene is ideal for analog RF devices while MoS2 is ideal for digital low-power FETs.

3 citations

Journal ArticleDOI
TL;DR: In this article, a method for patterning SiC structures on silicon was developed based on the reaction of C60 with Si at temperatures above 800°C and the treatment of vapor-deposited C60 films with a beam of Ar+ transforms the surface layer of the C60 into a nonvolatile carbon deposit.
Abstract: Reaction of C60 with Si at temperatures above 800°C is known to give SiC. Furthermore, treatment of vapor-deposited C60 films with a beam of Ar+ transforms the surface layer of C60 into a nonvolatile carbon deposit. Based on these two findings, we have developed a method for patterning SiC structures on silicon. C60 is first vapor deposited onto a clean Si surface. By rastering the ion beam on selected parts of the sample, we write a chosen pattern on the C60 film. Upon increasing the temperature to around 300–350°C, the C60 film remains only in the areas that were subjected to irradiation, while it evaporates off the remaining surface. During the subsequent annealing at 900°C, the modified C60 layer confines the underlying C60 on the silicon surface, allowing the formation of SiC. At shorter times, traces of the capping layer are visible at the edges of the irradiated zone. These results demonstrate the principle of fabricating lithographically patterned SiC structures on silicon without masking and etching processes and with the high lateral resolution possible with ion beams.

3 citations

Posted Content
TL;DR: In this paper, a plasmonic metasurface with two Fano resonances was used to enhance the interaction of infrared light with electrically controllable single layer graphene.
Abstract: Plasmonic metasurfaces represent a promising platform for enhancing light-matter interaction. Active control of the optical response of metasurfaces is desirable for applications such as beam-steering, modulators and switches, biochemical sensors, and compact optoelectronic devices. Here we use a plasmonic metasurface with two Fano resonances to enhance the interaction of infrared light with electrically controllable single layer graphene. It is experimentally shown that the narrow spectral width of these resonances, combined with strong light/graphene coupling, enables reflectivity modulation by nearly an order of magnitude leading to a modulation depth as large as 90%. . Numerical simulations demonstrate the possibility of strong active modulation of the phase of the reflected light while keeping the reflectivity nearly constant, thereby paving the way to tunable infrared lensing and beam steering

2 citations

Journal ArticleDOI
TL;DR: A unique discrete deformation measure called spatial secant is introduced and a new hyperelastic model based on this measure is developed that provides a geometric exact mapping in the discrete sense of three-dimensional nanostructures.
Abstract: The main objective of this paper is to present a coarse-grained material model for the simulation of three-dimensional nanostructures. The developed model is motivated by the recent progress in establishing continuum models for nanomaterials and nanostructures. As there are conceptual differences between the continuum field defined in the classical sense and the nanomaterials consisting of discrete, space-filling atoms, existing continuum measures cannot be directly applied for mapping the nanostructures due to the discreteness at small length scale. In view of the fundamental difficulties associated with the direct application of the continuum approach, we introduce a unique discrete deformation measure called spatial secant and have developed a new hyperelastic model based on this measure. We show that the spatial secant-based model is consistently linked to the underlying atomistic model and provides a geometric exact mapping in the discrete sense. In addition, we outline the corresponding computational framework using the finite element and/or meshfree method. The implementation is within the context of finite deformation. Finally we illustrate the application of the model in studying the mechanics of low-dimensional carbon nanostructures such as carbon nanotubes (CNT). By comparing with full-scale molecular mechanics simulations, we show that the proposed coarse-grained model is robust in that it accurately captures the non-linear mechanical responses of the CNT structures.

2 citations

Book ChapterDOI
22 Apr 2002
TL;DR: In this paper, the authors describe the implementation of new tools for the measurement of the mechanics of nanostructures, which have been used to measure the stiffness, fracture strength, and various tribological properties of carbon nanotubes.
Abstract: We describe the implementation of new tools for the measurement of the mechanics of nanostructures. These tools have been used to measured the stiffness, fracture strength, and various tribological properties, of carbon nanotubes.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations