scispace - formally typeset
Search or ask a question
Author

Rodney S. Ruoff

Bio: Rodney S. Ruoff is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 164, co-authored 666 publications receiving 194902 citations. Previous affiliations of Rodney S. Ruoff include Texas State University & North Carolina State University.


Papers
More filters
Journal ArticleDOI
09 Apr 2010-ACS Nano
TL;DR: These studies suggest the possibility of tuning the properties of GO composites by altering the density of functional groups on individual platelets, the water content, and possibly the functional groups participating in hydrogen bonding with interlayer water molecules.
Abstract: A multilayered composite structure formed by a random stacking of graphene oxide (GO) platelets is an attractive candidate for novel applications in nanoelectromechanical systems and paper-like composites. We employ molecular dynamics simulations with reactive force fields to elucidate the structural and mechanical properties of GO paper-like materials. We find that the large-scale properties of these composites are controlled by hydrogen bond networks that involve functional groups on individual GO platelets and water molecules within the interlayer cavities. Water content controls both the extent and collective strength of these interlayer hydrogen bond networks, thereby affecting the interlayer spacing and elastic moduli of the composite. Additionally, the chemical composition of the individual GO platelets also plays a critical role in establishing the mechanical properties of the composite—a higher density of functional groups leads to increased hydrogen bonding and a corresponding increase in stiffn...

674 citations

Journal ArticleDOI
TL;DR: In this article, the isotope effects on the thermal properties of two-dimensional (2D) crystals, such as graphene, have been investigated, and it was shown that isotope effect was substantially different in 2D crystals such as graphite than in 3D graphite.
Abstract: was shown to be substantially different in two-dimensional (2D) crystals, such as graphene, than in three-dimensional (3D) graphite [7-10]. Here, we report the first experimental study of the isotope effects on the thermal properties of graphene. Isotopically modified graphene containing various percentages of

666 citations

Journal ArticleDOI
TL;DR: In this article, a systematic study has been performed in order to find an appropriate medium for solubilization/dispersion of pristine single-walled carbon nanotubes (SWCNTs).
Abstract: A systematic study has been performed in order to find an appropriate medium for solubilization/dispersion of pristine single-walled carbon nanotubes (SWCNTs). Five solvents, all featuring high electron pair donicity (β) and low hydrogen bond parameter (α) have demonstrated the ability to readily form stable dispersions. The best dispersions have been characterized by UV/visible-NIR spectra, ESR spectra, and atomic force microscopy (AFM).

666 citations

Journal ArticleDOI
25 Jan 2011-ACS Nano
TL;DR: A high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte with enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions.
Abstract: We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf2). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf2 electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.

657 citations

Journal ArticleDOI
TL;DR: Ruoff et al. as discussed by the authors discussed the properties of carbon nanotubes based on recent advances in both modeling and experiment, and proposed a method to estimate the mechanical properties of the nanotube.

628 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations