scispace - formally typeset
Search or ask a question
Author

Rodney S. Ruoff

Bio: Rodney S. Ruoff is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 164, co-authored 666 publications receiving 194902 citations. Previous affiliations of Rodney S. Ruoff include Texas State University & North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors determined the constantes de rotation for quelques especes isotopiques de chaque systeme, and the constante de couplage quadripolaire a partir de la structure hyperfine des transitions rotationnelles.
Abstract: Determination des constantes de rotation pour quelques especes isotopiques de chaque systeme. Determination des constantes de couplage quadripolaire a partir de la structure hyperfine des transitions rotationnelles. Estimation des constantes de force d'elongation et des forces de liaison avec une analyse simple de distorsion centrifuge

82 citations

Journal ArticleDOI
TL;DR: In this article, a simple approach has been developed for the synthesis of Pt nanoparticles with uniform diameters of approximately 2.9 nm supported on reduced graphene oxide (RG-O) platelets via a modified polyol method.
Abstract: A simple approach has been developed for the synthesis of Pt nanoparticles with uniform diameters of approximately 2.9 nm supported on reduced graphene oxide (RG-O) platelets via a modified polyol method. Compared to Johnson Matthey (JM) Pt/C (75 wt % Pt) catalyst, the Pt/RG-O (70 wt % Pt) composite showed much higher electrochemical surface area, greater catalytic activity towards the oxygen reduction reaction (ORR), and significantly better single cell polarization performance. The maximum power density of the Pt/RG-O composite was about 128 mW cm−2, an 11% greater than the JM Pt/C commercial catalyst.

82 citations

Journal ArticleDOI
28 Oct 2014-ACS Nano
TL;DR: Measurements of the traction-separation relations, which represent the strength and range of adhesive interactions, and the adhesion energy between wet-transferred, CVD grown graphene and the native oxide surface of silicon substrates, suggest that other mechanisms are present.
Abstract: The wet-transfer of graphene grown by chemical vapor deposition (CVD) has been the standard procedure for transferring graphene to any substrate. However, the nature of the interactions between large area graphene and target substrates is unknown. Here, we report on measurements of the traction–separation relations, which represent the strength and range of adhesive interactions, and the adhesion energy between wet-transferred, CVD grown graphene and the native oxide surface of silicon substrates. These were determined by coupling interferometry measurements of the separation between the graphene and silicon with fracture mechanics concepts and analyses. The measured adhesion energy was 357 ± 16 mJ/m2, which is commensurate with van der Waals interactions. However, the deduced traction–separation relation for graphene-silicon interactions exhibited a much longer range interaction than those normally associated with van der Waals forces, suggesting that other mechanisms are present.

81 citations

Journal ArticleDOI
28 Nov 2011-ACS Nano
TL;DR: The results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO.
Abstract: As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.

81 citations

Journal ArticleDOI
TL;DR: In this article, the deposition effect of metals on graphene was studied by in situ field effect transistor (FET) measurements in high vacuum, and the induced carrier concentration was estimated at 2-6×1012/cm2.
Abstract: The deposition effect of metals on graphene was studied by in situ field effect transistor (FET) measurements in high vacuum. Metals such as gold (Au), silver (Ag), and copper (Cu) were deposited onto clean graphene surfaces, followed by FET measurements. The results show that Ag and Cu cause a shift in the Fermi level in the graphene from the Dirac point into the conduction band while Au causes a shift into the valence band. The induced carrier concentration was estimated at 2–6×1012/cm2. The shifts in the Fermi level of the graphene are explained by the different work functions of these metals.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations