scispace - formally typeset
Search or ask a question
Author

Rodney S. Ruoff

Bio: Rodney S. Ruoff is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 164, co-authored 666 publications receiving 194902 citations. Previous affiliations of Rodney S. Ruoff include Texas State University & North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the 14N nuclear quadrupole hyperfine structure was analyzed and the interaction constants and line centers were fitted to obtain ground vibronic state rotational constants for 22 isotopic species of (HCN)3, B0 was found to be 469.3073 MHz and DJ, 82.6(1) Hz.
Abstract: Microwave rotational spectra have been observed for 22 isotopic species of an HCN, hydrogen‐bonded trimer with the pulsed nozzle, Fourier transform method using the Flygare/Balle Mark II spectrometer. The 14N nuclear quadrupole hyperfine structure was analyzed and the interaction constants and line centers determined. The line centers were fitted to obtain ground vibronic state rotational constants. For the normal isotopic species of (HCN)3, B0 was found to be 469.3073(1) MHz and DJ, 82.6(1) Hz. The quadrupole coupling constants χ(n) are −4.049(2), −4.251(2), and −4.375(1)MHz for n=1, 2, and 3, respectively, in HCN(1)HCN(2)HCN(3). The trimer has a linear or very near linear equilibrium structure. The B0’s are insensitive to the position and torsional oscillations of the central HCN but they determine the outer HCNs quite accurately. An isotopic substitution method gives R, the c.m. distance between the outer HCN’s, to be 8.790 A in the 14–14–14 species. A slightly smaller value 8.788 A is obtained from a ...

78 citations

Journal ArticleDOI
TL;DR: This work provides an extensive study on the aligned growth of h-BN single crystals over large distances and highlights the obstacles that are needed to be overcome for a 2D material with a binary configuration.
Abstract: Atomically smooth hexagonal boron nitride (h-BN) films are considered as a nearly ideal dielectric interface for two-dimensional (2D) heterostructure devices. Reported mono- to few-layer 2D h-BN films, however, are mostly small grain-sized, polycrystalline and randomly oriented. Here we report the growth of centimetre-sized atomically thin h-BN films composed of aligned domains on resolidified Cu. The films consist of monolayer single crystalline triangular and hexagonal domains with size of up to ∼10 μm. The domains converge to symmetrical multifaceted shapes such as "butterfly" and "6-apex-star" and exhibit ∼75% grain alignment for over millimetre distances as verified through transmission electron microscopy. Scanning electron microscopy images reveal that these domains are aligned for over centimetre distances. Defect lines are generated along the grain boundaries of mirroring h-BN domains due to the two different polarities (BN and NB) and edges with the same termination. The observed triangular domains with truncated edges and alternatively hexagonal domains are in accordance with Wulff shapes that have minimum edge energy. This work provides an extensive study on the aligned growth of h-BN single crystals over large distances and highlights the obstacles that are needed to be overcome for a 2D material with a binary configuration.

78 citations

Journal ArticleDOI
01 Aug 2013
TL;DR: The dispersion stability with a very small amount of graphene oxide-based stabilizer offers an intriguing opportunity for applications including CO2 sequestration and enhanced oil recovery in deep subsurface formations, which generally contain high-salinity brines.
Abstract: Stable dispersions of graphene oxide nanoplatelets were formed in water at pH 2–10 even with 5 wt% NaCl. For these conditions, oil-in-water emulsions stabilized with graphene oxide nanoplatelets remained partially stable for 1 year. The droplet sizes were as small as ∼1 μm with a low nanoplatelet concentration of 0.2 wt%. The emulsions were stable even for nanoplatelet concentrations down to 0.001 wt%. The stabilities of the emulsions even at high salinity may be attributed to the high anion density at the graphene oxide nanoplatelet edges which protrude into the water phase. Furthermore, the graphene oxide nanoplatelets are shown to adsorb on the surfaces of the oil droplets. The conceptual picture of graphene oxide nanoplatelets adsorbed to a greater extent on the water side of the oil/water interface, along with the high density of anions on their edges, cause the oil/water interface to curve about the oil phase, resulting in oil-in-water emulsion droplets. The dispersion stability with a very small amount of graphene oxide-based stabilizer, offers an intriguing opportunity for applications including CO2 sequestration and enhanced oil recovery in deep subsurface formations, which generally contain high-salinity brines.

78 citations

Journal ArticleDOI
09 Oct 2014-Polymer
TL;DR: In this paper, an Octadecylamine-modified graphene-oxide (OMGO) polybutadiene nanocomposites with different OMGO loadings were prepared by solution mixing, and the dispersion of OMGO in chloroform was greatly improved compared to GO.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations