scispace - formally typeset
Search or ask a question
Author

Rodney S. Ruoff

Bio: Rodney S. Ruoff is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 164, co-authored 666 publications receiving 194902 citations. Previous affiliations of Rodney S. Ruoff include Texas State University & North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Bone-shaped T-CNTs (templated carbon nanotubes) have potential application in nanocomposites, where improved strength and toughness through mechanical interlocking is anticipated as mentioned in this paper.
Abstract: A novel template synthesis of bone-shaped (dumbbell-shaped, dogbone-shaped) nanomaterials is demonstrated. Porous anodic alumina (PAA) templates with uniform nanochannels were fabricated using a four-step anodization process and used to form bone-shaped carbon nanostructures with stem and end diameters and lengths of 40 nm, 70 nm, and 5 Im, respectively. These nanomaterials, which we refer to as bone-shaped T-CNTs (templated carbon nanotubes), have potential application in nanocomposites, where improved strength and toughness through mechanical interlocking is anticipated.

71 citations

Journal ArticleDOI
TL;DR: In this paper, a high-mobility graphene field effect transistor with embedded gate was fabricated on smooth spin-coated polyimide films, achieving a maximum electron and hole mobility of 4930 cm2/V
Abstract: A high-mobility graphene field-effect transistor with embedded gate was fabricated on smooth spin-coated polyimide films. Electrostatic transport measurements reveal a maximum electron and hole mobility of 4930 cm2/V s and 1130 cm2/V s, respectively. Temperature dependent measurements indicate that carrier transport is not limited by intrinsic mechanisms but by charged impurities, surface roughness, and defects, suggesting that further increases in mobility are possible. The measured carrier mobilities are the highest reported for graphene transistors on polymeric substrates and hence enable high-speed devices for flexible electronics from graphene grown by size-scalable chemical vapor deposition.

70 citations

Journal ArticleDOI
TL;DR: In this paper, rotational spectra of the Ar2-HCl trimer with the pulsed nozzle Fourier transform method using the Flygare Mark II spectrometer were analyzed for each of the transitions and the coupling constants and line centers determined.
Abstract: Microwave rotational spectra have been observed for both Cl isotopes of the Ar2–HCl trimer with the pulsed nozzle Fourier transform method using the Flygare Mark II spectrometer. The Cl nuclear quadrupole hyperfine structure was analyzed for each of the transitions and the coupling constants and line centers determined. Sixteen transitions were observed in the 2 to 15 GHz region for the 35Cl species and 11 for 37Cl. The line centers were fitted to obtain ground state rotational and quartic centrifugal distortion constants A‘, B‘, C‘, τ1, τ2, τaaaa, τbbbb, and τcccc. For Ar2–H35Cl, the values are 1733.857, 1667.932, 844.491, −0.1170, −0.0292, −0.1199, −0.0802, and −0.0079 MHz, respectively, and for Ar2–H37Cl: 1733.824, 1606.877, 828.497, −0.1121, −0.0279, −0.1205, −0.0737, and −0.0075 MHz. The equilibrium geometry is determined to be T shaped with C2v symmetry and the H end of the HCl closest to the Ar2. Large amplitude slightly anisotropic torsional motion of the HCl is evident from the hyperfine constant...

70 citations

Patent
27 Apr 2009
TL;DR: In this paper, an electrochemical device comprising a chemically modified graphene material is disclosed, along with a method of making an ultracapacitor, the method comprising forming two electrodes, wherein at least one of the two electrodes comprises a graphene material, and positioning each of the electrodes such that each is in contact with an opposing side of a separator and a current collector.
Abstract: An electrochemical device comprising a chemically modified graphene material is disclosed. An ultracapacitor comprising a chemically modified graphene material is disclosed, along either with a method of making an ultracapacitor, the method comprising forming two electrodes, wherein at least one of the two electrodes comprises a graphene material, and positioning each of the two electrodes such that each is in contact with an opposing side of a separator and a current collector

69 citations

Journal ArticleDOI
21 Jun 2013-Polymer
TL;DR: In this article, a graphite oxide (GO) was modified using 3-aminopropyltriethoxysilane (APTES) to investigate the impact of dispersion and interfacial bonding on the mechanical properties.

68 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations