scispace - formally typeset
Search or ask a question
Author

Rodney S. Ruoff

Bio: Rodney S. Ruoff is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 164, co-authored 666 publications receiving 194902 citations. Previous affiliations of Rodney S. Ruoff include Texas State University & North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the adsorption and desorption rates of ammonia molecules on graphene have been extracted from the measured Fermi level shift as a function of exposure time.
Abstract: In this paper, we evaluate of the adsorption/ desorption of ammonia molecules on a graphene surface by studying the Fermi level shift. Based on a physically plausible model, the adsorption and desorption rates of ammonia molecules on graphene have been extracted from the measured Fermi level shift as a function of exposure time. An electric field-induced flipping behavior of ammonia molecules on graphene is suggested, based on field effect transistor (FET) measurements.

49 citations

Journal ArticleDOI
TL;DR: The resulting stacked graphene sample is a freestanding film with near-perfect in-plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials.
Abstract: A macroscopic film (2.5 cm × 2.5 cm) made by layer-by-layer assembly of 100 single-layer polycrystalline graphene films is reported. The graphene layers are transferred and stacked one by one using a wet process that leads to layer defects and interstitial contamination. Heat-treatment of the sample up to 2800 °C results in the removal of interstitial contaminants and the healing of graphene layer defects. The resulting stacked graphene sample is a freestanding film with near-perfect in-plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials. Macroscale tensile tests yields maximum values of 62 GPa for the Young's modulus and 0.70 GPa for the fracture strength, significantly higher than has been reported for any other macroscale carbon films; microscale tensile tests yield maximum values of 290 GPa for the Young's modulus and 5.8 GPa for the fracture strength. The measured in-plane thermal conductivity is exceptionally high, 2292 ± 159 W m-1 K-1 while in-plane electrical conductivity is 2.2 × 105 S m-1 . The high performance of these films is attributed to the combination of the high in-plane crystalline order and unique stacking configuration through the thickness.

48 citations

Journal ArticleDOI
TL;DR: In this article, it is demonstrated theoretically and experimentally that atomically thin boron nitride (BN) nanosheets as an adsorbent experience conformational changes upon surface adsorption of molecules, increasing adsorship energy and efficiency.
Abstract: Surface interaction is extremely important to both fundamental research and practical application. Physisorption can induce shape and structural distortion (i.e., conformational changes) in macromolecular and biomolecular adsorbates, but such phenomena have rarely been observed on adsorbents. Here, it is demonstrated theoretically and experimentally that atomically thin boron nitride (BN) nanosheets as an adsorbent experience conformational changes upon surface adsorption of molecules, increasing adsorption energy and efficiency. The study not only provides new perspectives on the strong adsorption capability of BN nanosheets and many other two-dimensional (2D) nanomaterials but also opens up possibilities for many novel applications. For example, it is demonstrated that BN nanosheets with the same surface area as bulk hexagonal BN particles are more effective in purification and sensing.

48 citations

Journal ArticleDOI
TL;DR: In this article, the Boundary Element Method has been used to model the field enhancement factors of free-standing sub-nanometre graphite sheets, which are thought to be suitable for use as field emission sources.

48 citations

Journal ArticleDOI
W. Krakow1, Nilda Martinez Rivera1, R. A. Roy1, Rodney S. Ruoff1, Jerome J. Cuomo1 
TL;DR: In this paper, both electron diffraction and high-resolution microscopy have been used to assess the degree of crystallinity, the orientational ordering and the nature of defects present in these face-centered-cubic films.
Abstract: Thin films (25-2500 A) of C60 molecules have been deposited on both (001) NaCl and mica substrates at varying temperatures by resistive evaporation. Both electron diffraction and high resolution microscopy have been used to assess the degree of crystallinity, the orientational ordering and the nature of the defects present in these face-centered-cubic films. For NaCl, optimum conditions yielded polycrystalline films with a tendency towards a 〈110〉 orientation, while for mica, extended single crystal films have been fabricated which exhibit a 〈111〉 direction normal to the film surface.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations