scispace - formally typeset
Search or ask a question
Author

Rodney S. Ruoff

Bio: Rodney S. Ruoff is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Graphene oxide paper. The author has an hindex of 164, co-authored 666 publications receiving 194902 citations. Previous affiliations of Rodney S. Ruoff include Texas State University & North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that roughly 37% of the virgin carbon soot can be solvated by the use of 1,2,4-trichlorobenzene.

42 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical finite element model is presented which can extract a material's true resistivity from co-linear 4-probe electrical measurements on highly resistive samples with large electrodes that extend across the sample width.
Abstract: In four-probe (4-probe) electrical measurements, especially on highly resistive materials, it is not always possible to configure the electrodes such that the current density is uniform throughout the sample. Under such circumstances, simply considering the material's electrical resistivity to be proportional to the measured resistance with the proportionality constant given by the sample geometry can give an incorrect result. In this paper, a numerical finite element model is presented which can extract a material's true resistivity from co-linear 4-probe electrical measurements on highly resistive samples with large electrodes that extend across the sample width. The finite element model is used to investigate the influence of material anisotropy, the resistance of the sample–electrode interfaces and the relative electrode-to-sample size on the potential and current density distributions in the sample. A correction factor is introduced to account for the impact of these effects on the measured resistivity. In the limit of large interface resistance, excellent agreement is found with an analytical expression derived elsewhere (Esposito et al 2000 J. Appl. Phys. 88 2724–9). The approach presented here can be used to evaluate a variety of effects on co-linear 4-probe electrical measurements, can be extended to complex specimen geometries with arbitrary electrode arrangements and, additionally, could find use in the evaluation of data from 4-probe thermal conductivity measurements.

41 citations

Patent
16 Feb 2010
TL;DR: In this paper, a method and semiconductor device for synthesizing graphene using ion implantation of carbon was proposed, in which carbon is implanted in a metal using Ion implantation and the metal is annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the surface of the metal.
Abstract: A method and semiconductor device for synthesizing graphene using ion implantation of carbon. Carbon is implanted in a metal using ion implantation. After the carbon is distributed in the metal, the metal is annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the surface of the metal. The metal/graphene surface is then transferred to a dielectric layer in such a manner that the graphene layer is placed on top of the dielectric layer. The metal layer is then removed. Alternatively, recessed regions are patterned and etched in a dielectric layer located on a substrate. Metal is later formed in these recessed regions. Carbon is then implanted into the metal using ion implantation. The metal may then be annealed and cooled in order to precipitate the carbon from the metal to form a layer of graphene on the metal's surface.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe their early interest in graphene and contributions that they and their co-authors have made to the field, along with a brief history of the experimental discovery of graphene and then turn to new carbon materials whose experimental syntheses might be on the horizon.
Abstract: In this article, I describe my early interest in graphene and contributions that I and my co-authors, in particular, have made to the field, along with a brief history of the experimental discovery of graphene. I then turn to new carbon materials whose experimental syntheses might be on the horizon. One example involves using graphene as a template to generate large-area ultrathin sp3-bonded carbon sheets that could also be substitutionally doped with, for example, nitrogen atoms, as one approach to making materials of interest for quantum computing. Such large-area sp3-bonded carbon sheets hold tremendous promise for use in thermal management; as a new material for electronics and photonics; and as ultrahigh-strength components in various structures including those used in aerospace, among other applications. Another example is the class of negative-curvature carbons (NCCs) that have atom-thick walls and carbon atoms trivalently bonded to other carbon atoms. Such NCCs have a nanoscale pore structure, atom-thick walls, and exceptionally high specific surface areas, and they fill three-dimensional space in ways that suggest their use as electrode materials for ultracapacitors and batteries, as adsorbents, as support material for catalysts, and for other applications.

41 citations

Journal ArticleDOI
TL;DR: An interlayer Morse potential previously developed from a local density approximation treatment of a bilayer of graphite is used, which is the first treatment that attempts to account for deformations that have the layers approaching each other at very high local (interlayer) stress levels.
Abstract: A study on the modeling and simulation of interlayer interaction in the multiwalled carbon nanotube (MWCNT) system is presented. We use an interlayer Morse potential previously developed from a local density approximation (LDA) treatment of a bilayer of graphite. We have fit this Morse potential to experimental high-pressure compressibility data for graphite and to a more extensive LDA equation of state (EOS) for graphite, and excellent agreement is observed. We employ this potential to treat the interlayer mechanics of MWCNTs, where the MWCNT is so highly deformed that interlayer separation well below approximately 0.34 nm, such as down to approximately 0.26 nm, is occurring. This, to our knowledge, is the first treatment that attempts to account for deformations that have the layers approaching each other at very high local (interlayer) stress levels. Since evaluating the interlayer potential for a large MWCNT system is computationally intensive, a continuum simulation approach is proposed that saves on computational time and thus on cost. Comparisons with experimental results of buckled and highly kinked MWCNTs are presented.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations