scispace - formally typeset
Search or ask a question
Author

Rodolfo A. Milito

Other affiliations: AT&T Labs, AT&T, Bell Labs  ...read more
Bio: Rodolfo A. Milito is an academic researcher from Cisco Systems, Inc.. The author has contributed to research in topics: Queueing theory & Optimal control. The author has an hindex of 18, co-authored 45 publications receiving 6334 citations. Previous affiliations of Rodolfo A. Milito include AT&T Labs & AT&T.

Papers
More filters
Proceedings ArticleDOI
17 Aug 2012
TL;DR: This paper argues that the above characteristics make the Fog the appropriate platform for a number of critical Internet of Things services and applications, namely, Connected Vehicle, Smart Grid, Smart Cities, and, in general, Wireless Sensors and Actuators Networks (WSANs).
Abstract: Fog Computing extends the Cloud Computing paradigm to the edge of the network, thus enabling a new breed of applications and services. Defining characteristics of the Fog are: a) Low latency and location awareness; b) Wide-spread geographical distribution; c) Mobility; d) Very large number of nodes, e) Predominant role of wireless access, f) Strong presence of streaming and real time applications, g) Heterogeneity. In this paper we argue that the above characteristics make the Fog the appropriate platform for a number of critical Internet of Things (IoT) services and applications, namely, Connected Vehicle, Smart Grid, Smart Cities, and, in general, Wireless Sensors and Actuators Networks (WSANs).

4,440 citations

Book ChapterDOI
01 Jan 2014
TL;DR: This chapter proposes a hierarchical distributed architecture that extends from the edge of the network to the core nicknamed Fog Computing, and pays attention to a new dimension that IoT adds to Big Data and Analytics: a massively distributed number of sources at the edge.
Abstract: Internet of Things (IoT) brings more than an explosive proliferation of endpoints. It is disruptive in several ways. In this chapter we examine those disruptions, and propose a hierarchical distributed architecture that extends from the edge of the network to the core nicknamed Fog Computing. In particular, we pay attention to a new dimension that IoT adds to Big Data and Analytics: a massively distributed number of sources at the edge.

1,036 citations

Proceedings ArticleDOI
01 Dec 2014
TL;DR: This paper examines some of the most promising and challenging scenarios in IoT, and shows why current compute and storage models confined to data centers will not be able to meet the requirements of many of the applications foreseen for those scenarios.
Abstract: This paper examines some of the most promising and challenging scenarios in IoT, and shows why current compute and storage models confined to data centers will not be able to meet the requirements of many of the applications foreseen for those scenarios. Our analysis is particularly centered on three interrelated requirements: 1) mobility; 2) reliable control and actuation; and 3) scalability, especially, in IoT scenarios that span large geographical areas and require real-time decisions based on data analytics. Based on our analysis, we expose the reasons why Fog Computing is the natural platform for IoT, and discuss the unavoidable interplay of the Fog and the Cloud in the coming years. In the process, we review some of the technologies that will require considerable advances in order to support the applications that the IoT market will demand.

301 citations

Patent
09 Jul 1993
TL;DR: In this article, the calls are distributed according to a customer specified policy to maximize revenue or profit, to minimize waiting time or to minimize probability of abandonment, and the calls of the most profitable type may be given preference for completion, while the less profitable calls are rejected.
Abstract: This invention relates to a method of distributing calls among a plurality of destinations of a customer. The calls are distributed according to a customer specified policy to maximize revenue or profit, to minimize waiting time or to minimize probability of abandonment. Different types of calls, such as orders, repair requests, and general information requests can be distributed differently. For example, if the criterion is maximizing profit, then calls of the most profitable type may be given preference for completion, while, during a busy period, some of the less profitable calls are rejected.

202 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the leader-follower game may lead to a solution that is not Pareto optimal and in some cases may be "unfair," and that the cooperative game may provide a better solution for both the Internet service provider (ISP) and the user.
Abstract: The basic concepts of three branches of game theory, leader-follower, cooperative, and two-person nonzero sum games, are reviewed and applied to the study of the Internet pricing issue. In particular, we emphasize that the cooperative game (also called the bargaining problem) provides an overall picture for the issue. With a simple model for Internet quality of service (QoS), we demonstrate that the leader-follower game may lead to a solution that is not Pareto optimal and in some cases may be "unfair," and that the cooperative game may provide a better solution for both the Internet service provider (ISP) and the user. The practical implication of the results is that government regulation or arbitration may be helpful. The QoS model is also applied to study the competition between two ISPs, and we find a Nash equilibrium point from which the two ISPs would not move out without cooperation. The proposed approaches can be applied to other Internet pricing problems such as the Paris Metro pricing scheme.

172 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
Weisong Shi1, Jie Cao1, Quan Zhang1, Youhuizi Li1, Lanyu Xu1 
TL;DR: The definition of edge computing is introduced, followed by several case studies, ranging from cloud offloading to smart home and city, as well as collaborative edge to materialize the concept of edge Computing.
Abstract: The proliferation of Internet of Things (IoT) and the success of rich cloud services have pushed the horizon of a new computing paradigm, edge computing, which calls for processing the data at the edge of the network. Edge computing has the potential to address the concerns of response time requirement, battery life constraint, bandwidth cost saving, as well as data safety and privacy. In this paper, we introduce the definition of edge computing, followed by several case studies, ranging from cloud offloading to smart home and city, as well as collaborative edge to materialize the concept of edge computing. Finally, we present several challenges and opportunities in the field of edge computing, and hope this paper will gain attention from the community and inspire more research in this direction.

5,198 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations

Journal ArticleDOI
01 May 1975
TL;DR: The Fundamentals of Queueing Theory, Fourth Edition as discussed by the authors provides a comprehensive overview of simple and more advanced queuing models, with a self-contained presentation of key concepts and formulae.
Abstract: Praise for the Third Edition: "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented."IIE Transactions on Operations EngineeringThoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research.This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include:Retrial queuesApproximations for queueing networksNumerical inversion of transformsDetermining the appropriate number of servers to balance quality and cost of serviceEach chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site.With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

2,562 citations

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,289 citations