scispace - formally typeset
Search or ask a question
Author

Rodolfo Tonin

Other affiliations: University of Florence
Bio: Rodolfo Tonin is an academic researcher from Boston Children's Hospital. The author has contributed to research in topics: Compound heterozygosity & Medicine. The author has an hindex of 6, co-authored 13 publications receiving 122 citations. Previous affiliations of Rodolfo Tonin include University of Florence.

Papers
More filters
Journal ArticleDOI
TL;DR: The in silico functional predictions of all reported missense mutations allowed us to closely predict the early infantile, late infantile and juvenile phenotypes, also disclosing different degrees of severity in the juvenile phenotype.
Abstract: Background: Mutations in the CTSA gene, that encodes the protective protein/cathepsin A or PPCA, lead to the secondary deficiency of β-galactosidase (GLB1) and neuraminidase 1 (NEU1), causing the lysosomal storage disorder galactosialidosis (GS). Few clinical cases of GS have been reported in the literature, the majority of them belonging to the juvenile/adult group of patients. Methods: The correct nomenclature of mutations for this gene is discussed through the analysis of the three PPCA/CTSA isoforms available in the GenBank database. Phenotype-genotype correlation has been assessed by computational analysis and review of previously reported single amino acid substitutions. Results: We report the clinical and mutational analyses of four cases with the rare infantile form of GS. We identified three novel nucleotide changes, two of them resulting in the missense mutations, c.347A>G (p.His116Arg), c.775T>C (p.Cys259Arg), and the third, c.1216C>T, resulting in the p.Gln406* stop codon, a type of mutation identified for the first time in GS. An Italian founder effect of the c.114delG mutation can be suggested according to the origin of the only three patients carrying this mutation reported here and in the literature. Conclusions: In early reports mutations nomenclature was selected according to all CTSA isoforms (three different isoforms), thus generating a lot of confusion. In order to assist physicians in the interpretation of detected mutations, we mark the correct nomenclature for CTSA mutations. The complexity of pathology caused by the multifunctions of CTSA, and the very low numbers of mutations (only 23 overall) in relation to the length of the CTSA gene are discussed. In addition, the in silico functional predictions of all reported missense mutations allowed us to closely predict the early infantile, late infantile and juvenile phenotypes, also disclosing different degrees of severity in the juvenile phenotype.

51 citations

Journal ArticleDOI
TL;DR: A molecular testing algorithm designed to help diagnosing MPS IVA and foreseeing disease progression is defined and two new large deletions are characterized and their corresponding breakpoints are characterized.
Abstract: Morquio A syndrome (MPS IVA) is a systemic lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfatase (GALNS), encoded by the GALNS gene. We studied 37 MPS IV A patients and defined genotype-phenotype correlations based on clinical data, biochemical assays, molecular analyses, and in silico structural analyses of associated mutations. We found that standard sequencing procedures, albeit identifying 14 novel small GALNS genetic lesions, failed to characterize the second disease-causing mutation in the 16% of the patients' cohort. To address this drawback and uncover potential gross GALNS rearrangements, we developed molecular procedures (CNV [copy-number variation] assays, QF-PCRs [quantitative fluorescent-PCRs]), endorsed by CGH-arrays. Using this approach, we characterized two new large deletions and their corresponding breakpoints. Both deletions were heterozygous and included the first exon of the PIEZO1 gene, which is associated with dehydrated hereditary stomatocitosis, an autosomal-dominant syndrome. In addition, we characterized the new GALNS intronic lesion c.245-11C>G causing m-RNA defects, although identified outside the GT/AG splice pair. We estimated the occurrence of the disease in the Italian population to be approximately 1:300,000 live births and defined a molecular testing algorithm designed to help diagnosing MPS IVA and foreseeing disease progression.

27 citations

Journal ArticleDOI
TL;DR: Molecular analysis and in silico tools are able to characterise ACADS variants, identifying the severe mutations and consequently indicating which patients could benefit from a long term follow- up, and it is emphasised that synonymous mutations can be relevant features and potentially associated with SCADD.
Abstract: Short-chain acyl-coA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation caused by ACADS gene alterations. SCADD is a heterogeneous condition, sometimes considered to be solely a biochemical condition given that it has been associated with variable clinical phenotypes ranging from no symptoms or signs to metabolic decompensation occurring early in life. A reason for this variability is due to SCAD alterations, such as the common p.Gly209Ser, that confer a disease susceptibility state but require a complex multifactorial/polygenic condition to manifest clinically. Our study focuses on 12 SCADD patients carrying 11 new ACADS variants, with the purpose of defining genotype–phenotype correlations based on clinical data, metabolite evaluation, molecular analyses, and in silico functional analyses. Interestingly, we identified a synonymous variant, c.765G > T (p.Gly255Gly) that influences ACADS mRNA splicing accuracy. mRNA characterisation demonstrated that this variant leads to an aberrant splicing product, harbouring a premature stop codon. Molecular analysis and in silico tools are able to characterise ACADS variants, identifying the severe mutations and consequently indicating which patients could benefit from a long term follow- up. We also emphasise that synonymous mutations can be relevant features and potentially associated with SCADD.

25 citations

Journal ArticleDOI
TL;DR: Clinical, biochemical and molecular analysis of five patients with sialidosis type I and the impact of these new mutations on the structural properties of NEU1 are discussed, with the aim of identifying the most frequent initial clinical manifestations and achieving more focused diagnoses.

19 citations

Journal ArticleDOI
TL;DR: GALNS variants located within deep intronic regions that have the potential to impact splicing machinery are identified and incorporated into the diagnostic flow procedure for the molecular analysis of Morquio A disease.
Abstract: Mucopolysaccharidosis-IVA (Morquio A disease) is a lysosomal disorder in which the abnormal accumulation of keratan sulfate and chondroitin-6-sulfate is consequent to mutations in the galactosamine-6-sulfatase (GALNS) gene. Since standard DNA sequencing analysis fails to detect about 16% of GALNS mutant alleles, gross DNA rearrangement screening and uniparental disomy evaluation are required to complete the molecular diagnosis. Despite this, the second pathogenic GALNS allele generally remains unidentified in ~ 5% of Morquio-A disease patients. In an attempt to bridge the residual gap between clinical and molecular diagnosis, we performed an mRNA-based evaluation of three Morquio-A disease patients in whom the second mutant GALNS allele had not been identified. We also performed sequence analysis of the entire GALNS gene in two patients. Different aberrant GALNS mRNA transcripts were characterized in each patient. Analysis of these transcripts then allowed the identification, in one patient, of a disease-causing deep intronic GALNS mutation. The aberrant mRNA products identified in the other two individuals resulted in partial exon loss. Despite sequencing the entire GALNS gene region in these patients, the identity of a single underlying pathological lesion could not be unequivocally determined. We postulate that a combination of multiple variants, acting in cis, may synergise in terms of their impact on the splicing machinery. We have identified GALNS variants located within deep intronic regions that have the potential to impact splicing. These findings have prompted us to incorporate mRNA analysis into our diagnostic flow procedure for the molecular analysis of Morquio A disease.

15 citations


Cited by
More filters
Journal ArticleDOI
12 Dec 2019-Cell
TL;DR: This study finds that microglia express a conserved core gene program of orthologous genes from rodents to humans, including ligands and receptors associated with interactions between glia and neurons, which provides an essential resource of conserved and divergent microglian pathways across evolution.

265 citations

Journal ArticleDOI
TL;DR: A novel classification of leukodystrophies is proposed that takes into account the primary involvement of any white matter component, and Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin; astrocytopathies; leuko-axonopathies; microgliopathy; andLeuko-vasculopathies.
Abstract: Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.

216 citations

01 Jan 2001
TL;DR: In this paper, the authors investigated for MCAD mutations in newborns from US populations who had been identified by prospective MS/MS-based screening of 930,078 blood spots.
Abstract: Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial β-oxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985A→G, and a further 18% have this mutation in only one disease allele. In addition, a large number of rare disease-causing mutations have been identified and characterized. There is no clear genotype-phenotype correlation. High 985A→G carrier frequencies in populations of European descent and the usual avoidance of recurrent disease episodes by patients diagnosed with MCAD deficiency who comply with a simple dietary treatment suggest that MCAD deficiency is a candidate in prospective screening of newborns. Therefore, several such screening programs employing analysis of acylcarnitines in blood spots by tandem mass spectrometry (MS/MS) are currently used worldwide. No validation of this method by mutation analysis has yet been reported. We investigated for MCAD mutations in newborns from US populations who had been identified by prospective MS/MS-based screening of 930,078 blood spots. An MCAD-deficiency frequency of 1/15,001 was observed. Our mutation analysis shows that the MS/MS-based method is excellent for detection of MCAD deficiency but that the frequency of the 985A→G mutant allele in newborns with a positive acylcarnitine profile is much lower than that observed in clinically affected patients. Our identification of a new mutation, 199T→C, which has never been observed in patients with clinically manifested disease but was present in a large proportion of the acylcarnitine-positive samples, may explain this skewed ratio. Overexpression experiments showed that this is a mild folding mutation that exhibits decreased levels of enzyme activity only under stringent conditions. A carrier frequency of 1/500 in the general population makes the 199T→C mutation one of the three most prevalent mutations in the enzymes of fatty-acid oxidation.

192 citations

Journal ArticleDOI
TL;DR: This review examines how distinctive underlying disturbances of lysosomes in various neurodegenerative diseases result in unique patterns of auto/endolysosomal mistrafficking and re-visits the classical defining criteria for lysOSomes and the importance of preserving strict definitions.

183 citations

Journal ArticleDOI
TL;DR: Accumulation of non-oxidized fatty acids promotes their conjugation with glycine and l-carnitine and alternate ways of oxidation, such as ω-oxidation, which usually includes hypoketotic hypoglycemia triggered by fasting or infections.

165 citations