scispace - formally typeset
Search or ask a question
Author

Rodrigo Dienstmann

Bio: Rodrigo Dienstmann is an academic researcher from Autonomous University of Barcelona. The author has contributed to research in topics: Medicine & Colorectal cancer. The author has an hindex of 28, co-authored 61 publications receiving 5168 citations. Previous affiliations of Rodrigo Dienstmann include Universidade Federal do Rio Grande do Sul & Sage Bionetworks.


Papers
More filters
Journal ArticleDOI
TL;DR: An international consortium dedicated to large-scale data sharing and analytics across expert groups is formed, showing marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features.
Abstract: Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions.

3,351 citations

Journal ArticleDOI
TL;DR: Better characterization of the transcriptomic subtypes of colorectal cancer, encompassing tumour, stromal and immune components, has revealed convergent pathway dependencies that mandate a 'multi-molecular' perspective for the development of therapies to treat this disease.
Abstract: Critical driver genomic events in colorectal cancer have been shown to affect the response to targeted agents that were initially developed under the 'one gene, one drug' paradigm of precision medicine. Our current knowledge of the complexity of the cancer genome, clonal evolution patterns under treatment pressure and pharmacodynamic effects of target inhibition support the transition from a one gene, one drug approach to a 'multi-gene, multi-drug' model when making therapeutic decisions. Better characterization of the transcriptomic subtypes of colorectal cancer, encompassing tumour, stromal and immune components, has revealed convergent pathway dependencies that mandate a 'multi-molecular' perspective for the development of therapies to treat this disease.

678 citations

Journal ArticleDOI
TL;DR: B biomarker analyses of multiple studies strongly support the feasibility of refining risk stratification in colon cancer by factoring in molecular characteristics with pathologic tumor staging, and the value of BRAF or KRAS mutations as additional risk factors in stage III disease is greater when microsatellite status and tumor location are taken into account.
Abstract: For more than three decades, postoperative chemotherapy—initially fluoropyrimidines and more recently combinations with oxaliplatin—has reduced the risk of tumor recurrence and improved survival for patients with resected colon cancer. Although universally recommended for patients with stage III disease, there is no consensus about the survival benefit of postoperative chemotherapy in stage II colon cancer. The most recent adjuvant clinical trials have not shown any value for adding targeted agents, namely bevacizumab and cetuximab, to standard chemotherapies in stage III disease, despite improved outcomes in the metastatic setting. However, biomarker analyses of multiple studies strongly support the feasibility of refining risk stratification in colon cancer by factoring in molecular characteristics with pathologic tumor staging. In stage II disease, for example, microsatellite instability supports observation after surgery. Furthermore, the value of BRAF or KRAS mutations as additional risk factors in s...

281 citations

Journal ArticleDOI
TL;DR: Subtypes of stage III colon cancer, based on detection of mutations in BRAF (V600E) or KRAS, and MMR status that show differences in clinical and pathologic features and disease-free survival are identified.

278 citations

Journal ArticleDOI
TL;DR: A comprehensive landscape of the characteristics of solid tumors that may influence (or be influenced by) the characteristicsof their immune infiltrate is provided to help interpret the response of solid tumor to immunotherapies and guide the development of novel drug combination strategies.
Abstract: Purpose: Throughout their development, tumors are challenged by the immune system, and they acquire features to evade its surveillance A systematic view of these traits, which shed light on how tumors respond to immunotherapies, is still lackingExperimental Design: Here, we computed the relative abundance of an array of immune cell populations to measure the immune infiltration pattern of 9,174 tumors of 29 solid cancers We then clustered tumors with similar infiltration pattern to define immunophenotypes Finally, we identified genomic and transcriptomic traits associated to these immunophenotypes across cancer typesResults: In highly cytotoxic immunophenotypes, we found tumors with low clonal heterogeneity enriched for alterations of genes involved in epigenetic regulation, ubiquitin-mediated proteolysis, antigen presentation, and cell-cell communication, which may drive resistance in combination with the ectopic expression of negative immune checkpoints Tumors with immunophenotypes of intermediate cytotoxicity are characterized by an upregulation of processes involved in neighboring tissue invasion and remodeling that may foster the recruitment of immunosuppressive cells Tumors with poorly cytotoxic immunophenotype tend to be of more advanced stages and bear a greater burden of copy number alterations and frequent alterations of cell cycle, hedgehog, β-catenin, and TGFβ pathways, which may cause immune depletionConclusions: We provide a comprehensive landscape of the characteristics of solid tumors that may influence (or be influenced by) the characteristics of their immune infiltrate These results may help interpret the response of solid tumors to immunotherapies and guide the development of novel drug combination strategies Clin Cancer Res; 24(15); 3717-28 ©2018 AACR

208 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: An international consortium dedicated to large-scale data sharing and analytics across expert groups is formed, showing marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features.
Abstract: Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions.

3,351 citations

Journal ArticleDOI
TL;DR: By parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
Abstract: The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient's tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.

2,920 citations