scispace - formally typeset
Search or ask a question
Author

Rogelio Lozano

Bio: Rogelio Lozano is an academic researcher from University of Technology of Compiègne. The author has contributed to research in topics: Control theory & Adaptive control. The author has an hindex of 58, co-authored 496 publications receiving 14570 citations. Previous affiliations of Rogelio Lozano include University of Illinois at Urbana–Champaign & Instituto Politécnico Nacional.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple non-linear controller based on Lyapunov analysis for a planar vertical take-off and landing aircraft (PVTOL) is presented.

74 citations

Journal ArticleDOI
TL;DR: This paper describes the modeling, control and hardware implementation of an experimental tilt-rotor aircraft that combines the high-speed cruise capabilities of a conventional airplane with the hovering capability of a helicopter by tilting their four rotors.
Abstract: This paper describes the modeling, control and hardware implementation of an experimental tilt-rotor aircraft. This vehicle combines the high-speed cruise capabilities of a conventional airplane with the hovering capabilities of a helicopter by tilting their four rotors. Changing between cruise and hover flight modes in mid-air is referred to transition. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newtonian approach. Two nonlinear control strategies are presented and evaluated at simulation level to control, the vertical and horizontal flight dynamics of the vehicle in the longitudinal plane. An experimental prototype named Quad-plane was developed to perform the vertical flight. A low-cost DSP-based Embedded Flight Control System (EFCS) was designed and built to achieve autonomous attitude-stabilized flight.

74 citations

Journal ArticleDOI
TL;DR: The sliding mode control proposed removes the chattering phenomenon by replacing a sign function with a high-slope saturation function and the control algorithm is derived from the Lyapunov stability theorem.
Abstract: Nowadays, the chattering problem in sliding mode control is one of the most important points to consider in real-time applications. To address this problem, a real-time robust altitude control scheme is proposed for the efficient performance of a Quad-rotor aircraft system using a continuous sliding mode control. The sensing of altitude measurement sensing is performed by a pressure sensor in order to obtain a robust altitude control of the vehicle in hovering mode both indoor and outdoor. The altitude measurement has the advantage of introducing this state information directly in the closed loop control which should be very useful for achieving robust stabilization of the altitude control. Accordingly, we propose a sliding mode control strategy without chattering. The sliding mode control proposed removes the chattering phenomenon by replacing a sign function with a high-slope saturation function. The control algorithm is derived from the Lyapunov stability theorem. Moreover, we have assumed that the actuators are able to respond quickly and accurately and we have not enforced limits on the control signals for a real-time application. Finally, to verify the satisfactory performance of proposed nonlinear control law, several simulations and experimental results of the Chattering-free sliding mode control for the Quad-rotor aircraft in the presence of bounded disturbances are presented.

73 citations

Journal ArticleDOI
TL;DR: In this article, an alternative stability analysis is presented for recent results on global stabilization of a nonlinear system in cascade with a linear system. The analysis is carried out using passivity arguments and the relationship between passivity and an important class of Lyapunov function is also presented.
Abstract: An alternative stability analysis is presented for recent results on global stabilization of a nonlinear system in cascade with a linear system. The analysis is carried out using passivity arguments. The relationship between passivity and an important class of Lyapunov function is also presented. >

73 citations

Journal ArticleDOI
TL;DR: In this article, an adaptive control scheme for manipulators with redundant degrees of freedom is presented, where the control purpose is to achieve a desired interaction force between the end-effector and the environment as well as to regulate the robot tip position in the Cartesian space.
Abstract: An adaptive control scheme for manipulators with redundant degrees of freedom is presented. The control purpose is to achieve a desired interaction force between the end-effector and the environment as well as to regulate the robot tip position in the Cartesian space. This control approach does not require measurement of the joint acceleration or the force derivative. >

72 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Some open problems are discussed: the constructive use of the delayed inputs, the digital implementation of distributed delays, the control via the delay, and the handling of information related to the delay value.

3,206 citations

Journal ArticleDOI
Arie Levant1
TL;DR: In this article, the authors proposed arbitrary-order robust exact differentiators with finite-time convergence, which can be used to keep accurate a given constraint and feature theoretically-infinite-frequency switching.
Abstract: Being a motion on a discontinuity set of a dynamic system, sliding mode is used to keep accurately a given constraint and features theoretically-infinite-frequency switching. Standard sliding modes provide for finite-time convergence, precise keeping of the constraint and robustness with respect to internal and external disturbances. Yet the relative degree of the constraint has to be 1 and a dangerous chattering effect is possible. Higher-order sliding modes preserve or generalize the main properties of the standard sliding mode and remove the above restrictions. r-Sliding mode realization provides for up to the rth order of sliding precision with respect to the sampling interval compared with the first order of the standard sliding mode. Such controllers require higher-order real-time derivatives of the outputs to be available. The lacking information is achieved by means of proposed arbitrary-order robust exact differentiators with finite-time convergence. These differentiators feature optimal asymptot...

2,954 citations

01 Nov 1981
TL;DR: In this paper, the authors studied the effect of local derivatives on the detection of intensity edges in images, where the local difference of intensities is computed for each pixel in the image.
Abstract: Most of the signal processing that we will study in this course involves local operations on a signal, namely transforming the signal by applying linear combinations of values in the neighborhood of each sample point. You are familiar with such operations from Calculus, namely, taking derivatives and you are also familiar with this from optics namely blurring a signal. We will be looking at sampled signals only. Let's start with a few basic examples. Local difference Suppose we have a 1D image and we take the local difference of intensities, DI(x) = 1 2 (I(x + 1) − I(x − 1)) which give a discrete approximation to a partial derivative. (We compute this for each x in the image.) What is the effect of such a transformation? One key idea is that such a derivative would be useful for marking positions where the intensity changes. Such a change is called an edge. It is important to detect edges in images because they often mark locations at which object properties change. These can include changes in illumination along a surface due to a shadow boundary, or a material (pigment) change, or a change in depth as when one object ends and another begins. The computational problem of finding intensity edges in images is called edge detection. We could look for positions at which DI(x) has a large negative or positive value. Large positive values indicate an edge that goes from low to high intensity, and large negative values indicate an edge that goes from high to low intensity. Example Suppose the image consists of a single (slightly sloped) edge:

1,829 citations