scispace - formally typeset
Search or ask a question
Author

Rogelio Lozano

Bio: Rogelio Lozano is an academic researcher from University of Technology of Compiègne. The author has contributed to research in topics: Control theory & Adaptive control. The author has an hindex of 58, co-authored 496 publications receiving 14570 citations. Previous affiliations of Rogelio Lozano include University of Illinois at Urbana–Champaign & Instituto Politécnico Nacional.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents an indirect adaptive control scheme for linear systems which may possibly be a nonminimum phase and achieves asymptotical pole placement without either introducing persistent excitation probing signals into the systems or assuming any a priori knowledge on the plant parameters.
Abstract: This paper presents an indirect adaptive control scheme for linear systems which may possibly be a nonminimum phase. The control scheme achieves asymptotical pole placement without either introducing persistent excitation probing signals into the systems or assuming any a priori knowledge on the plant parameters. The system order is the only a priori knowledge required on the plant. The adaptive control law is free from singularities in the sense that the estimated plant model is always controllable. The singularities are overcome by a suitable parameter estimates modification which is based upon standard least squares covariance matrix properties. The analysis of the stability and the global convergence of a closed-loop system is given in detail for both discrete-time and continuous-time systems. >

114 citations

Journal ArticleDOI
TL;DR: This article deals with the design and real-time implementation of three second order sliding mode controllers for the altitude tracking of a quadrotor aircraft and Lyapunov stability theory is used to prove convergence in finite time of the altitude tracker error.

113 citations

Proceedings ArticleDOI
28 Sep 2004
TL;DR: Experimental results show that the controller is able to perform autonomously the tasks of taking-off, hovering and landing.
Abstract: In this paper we present a controller design and implementation on a mini-rotorcraft having four rotors A Lagrangian model of the helicopter was used for the controller synthesis The proposed controller is based on Lyapunov analysis Experimental results show that the controller is able to perform autonomously the tasks of taking-off, hovering and landing

113 citations

Journal ArticleDOI
TL;DR: In this paper, a global stabilizing control design for the planar vertical takeoff and landing (PVTOL) aircraft, with bounded inputs, is proposed. But the approach is based on the use of non-linear combinations of linear saturation functions bounding the thrust input and the rolling moment to arbitrary saturation limits.
Abstract: We propose a global stabilizing control design for the planar vertical takeoff and landing (PVTOL) aircraft, with bounded inputs. The approach is based on the use of non-linear combinations of linear saturation functions bounding the thrust input and the rolling moment to arbitrary saturation limits. We provide global convergence of the state to the origin, using a relatively simple algorithm.

109 citations

Journal ArticleDOI
TL;DR: A model separation is proposed to simplify the control of the six-degrees-of-freedom (6DOF) nonlinear dynamics of the flying robot to deal with quad-rotor’s 3D-motion via two subsystems: dynamic and kinematic underactuaded subsystems.
Abstract: The paper addresses the flight control of a quad-rotor subject to two dimensional unknown static/varying wind disturbances. A model separation is proposed to simplify the control of the six-degrees-of-freedom (6DOF) nonlinear dynamics of the flying robot. Such approach allows to deal with quad-rotor's 3D-motion via two subsystems: dynamic (altitude and MAV-relative forward velocity) and kinematic (nonholonomic-like navigation) subsystems. In terms of control, a hierarchical control is used as the overall control structure to stabilize the kinematic underactuaded subsystem. A control strategy based on sliding-mode and adaptive control techniques is proposed to deal with slow and fast time-varying wind conditions, respectively. This choice not only provides well tracking control but also improves the estimation of unknown disturbance. The backstepping technique is used to stabilize the inner-loop heading dynamics, such recursive design takes into account a constrained heading rate. Promising simulations results show the validity of the proposed control strategy while tracking a time-parameterized straight-line and sinusoidal trajectory.

108 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Some open problems are discussed: the constructive use of the delayed inputs, the digital implementation of distributed delays, the control via the delay, and the handling of information related to the delay value.

3,206 citations

Journal ArticleDOI
Arie Levant1
TL;DR: In this article, the authors proposed arbitrary-order robust exact differentiators with finite-time convergence, which can be used to keep accurate a given constraint and feature theoretically-infinite-frequency switching.
Abstract: Being a motion on a discontinuity set of a dynamic system, sliding mode is used to keep accurately a given constraint and features theoretically-infinite-frequency switching. Standard sliding modes provide for finite-time convergence, precise keeping of the constraint and robustness with respect to internal and external disturbances. Yet the relative degree of the constraint has to be 1 and a dangerous chattering effect is possible. Higher-order sliding modes preserve or generalize the main properties of the standard sliding mode and remove the above restrictions. r-Sliding mode realization provides for up to the rth order of sliding precision with respect to the sampling interval compared with the first order of the standard sliding mode. Such controllers require higher-order real-time derivatives of the outputs to be available. The lacking information is achieved by means of proposed arbitrary-order robust exact differentiators with finite-time convergence. These differentiators feature optimal asymptot...

2,954 citations

01 Nov 1981
TL;DR: In this paper, the authors studied the effect of local derivatives on the detection of intensity edges in images, where the local difference of intensities is computed for each pixel in the image.
Abstract: Most of the signal processing that we will study in this course involves local operations on a signal, namely transforming the signal by applying linear combinations of values in the neighborhood of each sample point. You are familiar with such operations from Calculus, namely, taking derivatives and you are also familiar with this from optics namely blurring a signal. We will be looking at sampled signals only. Let's start with a few basic examples. Local difference Suppose we have a 1D image and we take the local difference of intensities, DI(x) = 1 2 (I(x + 1) − I(x − 1)) which give a discrete approximation to a partial derivative. (We compute this for each x in the image.) What is the effect of such a transformation? One key idea is that such a derivative would be useful for marking positions where the intensity changes. Such a change is called an edge. It is important to detect edges in images because they often mark locations at which object properties change. These can include changes in illumination along a surface due to a shadow boundary, or a material (pigment) change, or a change in depth as when one object ends and another begins. The computational problem of finding intensity edges in images is called edge detection. We could look for positions at which DI(x) has a large negative or positive value. Large positive values indicate an edge that goes from low to high intensity, and large negative values indicate an edge that goes from high to low intensity. Example Suppose the image consists of a single (slightly sloped) edge:

1,829 citations