scispace - formally typeset
Search or ask a question
Author

Roger A. Dougal

Bio: Roger A. Dougal is an academic researcher from University of South Carolina. The author has contributed to research in topics: Electric power system & Fault (power engineering). The author has an hindex of 47, co-authored 305 publications receiving 9438 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a complete dynamic model of a lithium ion battery that is suitable for virtual prototyping of portable battery-powered systems, based on publicly available data such as the manufacturers' data sheets.
Abstract: Presents here a complete dynamic model of a lithium ion battery that is suitable for virtual-prototyping of portable battery-powered systems. The model accounts for nonlinear equilibrium potentials, rate- and temperature-dependencies, thermal effects and response to transient power demand. The model is based on publicly available data such as the manufacturers' data sheets. The Sony US18650 is used as an example. The model output agrees both with manufacturer's data and with experimental results. The model can be easily modified to fit data from different batteries and can be extended for wide dynamic ranges of different temperatures and current rates.

784 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a battery-ultracapacitor hybrid power source under pulsed load conditions is analyzed using simplified models, and the authors show that peak power can be greatly enhanced, internal losses can be considerably reduced, and that discharge life of the battery is extended.
Abstract: The performance of a battery-ultracapacitor hybrid power source under pulsed load conditions is analytically described using simplified models. We show that peak power can be greatly enhanced, internal losses can be considerably reduced, and that discharge life of the battery is extended. Greatest benefits are seen when the load pulse rate is higher than the system eigenfrequency and when the pulse duty is small. Actual benefits are substantial; adding a 23 F ultracapacitor bank (3 /spl times/ 7 PC10 ultracapacitors) in parallel with a typical Li-ion battery of 7.2 V and 1.35 A hr capacity can boost the peak power capacity by 5 times and reduce the power loss by 74%, while minimally impacting system volume and weight, for pulsed loads of 5 A, 1 Hz repetition rate, and 10% duty.

487 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and potential applications of the superconducting magnetic energy storage (SMES) technology in electrical power and energy systems, and a comparison is made among these three types of SMES.
Abstract: Superconducting magnetic energy storage (SMES) is known to be a very good energy storage device. This article provides an overview and potential applications of the SMES technology in electrical power and energy systems. SMES is categorized into three main groups depending on its power conditioning system, namely, the thyristor-based SMES, voltage-source- converter-based SMES, and current-source-converter-based SMES. An extensive bibliography is presented on the applications of these three types of SMES. Also, a comparison is made among these three types of SMES. This study provides a basic guideline to investigate further technological development and new applications of SMES, and thus benefits the readers, researchers, engineers, and academicians who deal with the research works in the area of SMES.

477 citations

Journal ArticleDOI
TL;DR: A portable solar PV system that effectively eliminates both of the aforementioned problems is described and proven and is capable of simultaneously maximizing the power generated by every PV cell in the PV panel.
Abstract: Solar photovoltaic (PV) arrays in portable applications are often subject to partial shading and rapid fluctuations of shading. In the usual series-connected wiring scheme, the residual energy generated by partially shaded cells either cannot be collected (if diode bypassed) or, worse, impedes collection of power from the remaining fully illuminated cells (if not bypassed). Rapid fluctuation of the shading pattern makes maximum power point (MPP) tracking difficult; generally, there will exist multiple local MPPs, and their values will change as rapidly as does the illumination. In this paper, a portable solar PV system that effectively eliminates both of the aforementioned problems is described and proven. This system is capable of simultaneously maximizing the power generated by every PV cell in the PV panel. The proposed configuration consists of an array of parallel-connected PV cells, a low-input-voltage step-up power converter, and a simple wide bandwidth MPP tracker. Parallel-configured PV systems are compared to traditional series-configured PV systems through both hardware experiments and computer simulations in this paper. Study results demonstrate that, under complex irradiance conditions, the power generated by the new configuration is approximately twice that of the traditional configuration. The solar PV system can be widely used in many consumer applications, such as PV vests for cell phones and music players.

469 citations

Journal ArticleDOI
TL;DR: In this paper, an actively controlled battery/ultracapacitor hybrid has been proposed to achieve higher specific power while reducing battery current and its internal loss, which can be scaled to larger or smaller power capacities for a variety of applications.
Abstract: An actively controlled battery/ultracapacitor hybrid has broad applications in pulse-operated power systems. A converter is used to actively control the power flow from a battery, to couple the battery to an ultracapacitor for power enhancement, and to deliver the power to a load efficiently. The experimental and simulation results show that the hybrid can achieve much greater specific power while reducing battery current and its internal loss. A specific example of the hybrid built from two size 18650 lithium-ion cells and two 100-F ultracapacitors achieved a peak power of 132 W which is a three-times improvement in peak power compared to the passive hybrid power source (hybrid without a converter), and a seven times improvement as compared to the lithium-ion cells alone. The design presented here can be scaled to larger or smaller power capacities for a variety of applications.

430 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed in this paper, and at least 19 distinct methods have been introduced in the literature, with many variations on implementation.
Abstract: The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed. The techniques are taken from the literature dating back to the earliest methods. It is shown that at least 19 distinct methods have been introduced in the literature, with many variations on implementation. This paper should serve as a convenient reference for future work in PV power generation.

5,022 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method of modeling and simulation of photovoltaic arrays by adjusting the curve at three points: open circuit, maximum power, and short circuit.
Abstract: This paper proposes a method of modeling and simulation of photovoltaic arrays. The main objective is to find the parameters of the nonlinear I-V equation by adjusting the curve at three points: open circuit, maximum power, and short circuit. Given these three points, which are provided by all commercial array data sheets, the method finds the best I-V equation for the single-diode photovoltaic (PV) model including the effect of the series and parallel resistances, and warranties that the maximum power of the model matches with the maximum power of the real array. With the parameters of the adjusted I-V equation, one can build a PV circuit model with any circuit simulator by using basic math blocks. The modeling method and the proposed circuit model are useful for power electronics designers who need a simple, fast, accurate, and easy-to-use modeling method for using in simulations of PV systems. In the first pages, the reader will find a tutorial on PV devices and will understand the parameters that compose the single-diode PV model. The modeling method is then introduced and presented in details. The model is validated with experimental data of commercial PV arrays.

3,811 citations

Journal ArticleDOI
TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.

2,790 citations

Journal ArticleDOI
TL;DR: In this article, the perturb and observe (PO) algorithm is used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions.
Abstract: Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions. The issue of MPPT has been addressed in different ways in the literature but, especially for low-cost implementations, the perturb and observe (PO moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper it is shown that, in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such parameters is also carried out. Results of experimental measurements are in agreement with the predictions of theoretical analysis.

2,696 citations