scispace - formally typeset
Search or ask a question
Author

Roger Mohr

Bio: Roger Mohr is an academic researcher from French Institute for Research in Computer Science and Automation. The author has contributed to research in topics: Fundamental matrix (computer vision) & Pixel. The author has an hindex of 23, co-authored 76 publications receiving 5287 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper addresses the problem of retrieving images from large image databases with a method based on local grayvalue invariants which are computed at automatically detected interest points and allows for efficient retrieval from a database of more than 1,000 images.
Abstract: This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficient retrieval from a database of more than 1,000 images. Experimental results show correct retrieval in the case of partial visibility, similarity transformations, extraneous features, and small perspective deformations.

1,756 citations

Journal ArticleDOI
TL;DR: Two evaluation criteria for interest points' repeatability rate and information content are introduced and different interest point detectors are compared using these two criteria.
Abstract: Many different low-level feature detectors exist and it is widely agreed that the evaluation of detectors is important. In this paper we introduce two evaluation criteria for interest points' repeatability rate and information content. Repeatability rate evaluates the geometric stability under different transformations. Information content measures the distinctiveness of features. Different interest point detectors are compared using these two criteria. We determine which detector gives the best results and show that it satisfies the criteria well.

1,690 citations

Proceedings ArticleDOI
04 Jan 1998
TL;DR: This paper shows that interest points are geometrically stable under different transformations and have high information content (distinctiveness) which make interest points very successful in the contest of image matching.
Abstract: Many computer vision tasks rely on feature extraction. Interest points are such features. This paper shows that interest points are geometrically stable under different transformations and have high information content (distinctiveness). These two properties make interest points very successful in the contest of image matching. To measure these two properties quantitatively, we introduce two evaluation criteria: repeatability rate and information content. The quality of the interest points depends on the detector used. In this paper several detectors are compared according to the criteria specified above. We determine which detector gives the best results and show that it satisfies the criteria well.

339 citations

Proceedings Article
01 Aug 1988

209 citations

Journal ArticleDOI
TL;DR: The problem of where to place the cameras in order to obtain a minimal error in the 3D measurements, also called camera network design in photogrammetry, is dealt with in terms of an optimization design using a multi-cellular genetic algorithm.

175 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Proceedings ArticleDOI
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.

16,989 citations

01 Jan 2011
TL;DR: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images that can then be used to reliably match objects in diering images.
Abstract: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images. These features can then be used to reliably match objects in diering images. The algorithm was rst proposed by Lowe [12] and further developed to increase performance resulting in the classic paper [13] that served as foundation for SIFT which has played an important role in robotic and machine vision in the past decade.

14,708 citations

Journal ArticleDOI
TL;DR: It is observed that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best and Moments and steerable filters show the best performance among the low dimensional descriptors.
Abstract: In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector [Mikolajczyk, K and Schmid, C, 2004]. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest region detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to precision and is carried out for different image transformations. We compare shape context [Belongie, S, et al., April 2002], steerable filters [Freeman, W and Adelson, E, Setp. 1991], PCA-SIFT [Ke, Y and Sukthankar, R, 2004], differential invariants [Koenderink, J and van Doorn, A, 1987], spin images [Lazebnik, S, et al., 2003], SIFT [Lowe, D. G., 1999], complex filters [Schaffalitzky, F and Zisserman, A, 2002], moment invariants [Van Gool, L, et al., 1996], and cross-correlation for different types of interest regions. We also propose an extension of the SIFT descriptor and show that it outperforms the original method. Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.

7,057 citations

Proceedings ArticleDOI
Sivic1, Zisserman1
13 Oct 2003
TL;DR: An approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video, represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion.
Abstract: We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion. The temporal continuity of the video within a shot is used to track the regions in order to reject unstable regions and reduce the effects of noise in the descriptors. The analogy with text retrieval is in the implementation where matches on descriptors are pre-computed (using vector quantization), and inverted file systems and document rankings are used. The result is that retrieved is immediate, returning a ranked list of key frames/shots in the manner of Google. The method is illustrated for matching in two full length feature films.

6,938 citations