scispace - formally typeset
Search or ask a question
Author

Roger P. Netterfield

Bio: Roger P. Netterfield is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Thin film & Optical coating. The author has an hindex of 19, co-authored 43 publications receiving 1364 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Substantial increases in the packing densities of SiO2, TiO2 , and ZrO2 films have been produced as measured by the reduction in the adsorption of moisture when the films are exposed to a humid atmosphere.
Abstract: Some effects on the properties of electron-beam evaporated thin films produced by ion bombardment of the growing film are reported. Substantial increases in the packing densities of SiO2 , TiO2 , and ZrO2 films have been produced as measured by the reduction in the adsorption of moisture when the films are exposed to a humid atmosphere. In a ZrO2-SiO2 multilayer interference filter, changes in the wavelength of the peak transmittance on exposure to the atmosphere have been reduced from 8 nm for films deposited without ion bombardment to <1 nm for ion-beam-assisted films.

316 citations

Journal ArticleDOI
TL;DR: The ratio of ion-current density to film growth rate required to produce films that did not adsorb moisture was found to be a minimum for ion energies in the 300–600-eV range and the crystal structure of CeO2 films is relatively stable under ion bombardment.
Abstract: Thin films have been prepared by electron-beam evaporation of CeO2, where the growing film has been bombarded with oxygen ions. The packing density of the films has been increased from ∼0.55 without ion bombardment to unity with bombardment as determined by moisture adsorption measurements. The refractive index, extinction coefficient, and scattering loss are reported for a range of ion energies from 50 to 1200 eV. The ratio of ion-current density to film growth rate required to produce films that did not adsorb moisture was found to be a minimum for ion energies in the 300–600-eV range. Absorption and scatter losses are smallest for the lower ion energies and the crystal structure of CeO2 films is relatively stable under ion bombardment although ion-assisted films tend to be less crystalline than evaporated layers.

123 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of the deposited titanium, TiO2 and TiN films were examined as a function of the external magnetic field strength, which resulted in deposited titanium films with a reduced microdroplet component whereas an internal field had no effect.

102 citations

Journal ArticleDOI
TL;DR: A three-stage process for the determination of the optical constants n and k of thin absorbing films on the basis of reflectance, transmittance, and thickness measurements is described, giving the single-wavelength reflectance as a function of film thickness.
Abstract: We describe a three-stage process for the determination of the optical constants n and k of thin absorbing films on the basis of reflectance, transmittance, and thickness measurements. The first stage uses a bivariate optimization based on the functions (1 ± R)/T, R denoting a reflectance and T the transmittance. The second stage uses a phase-variate approach based on an algorithm for locating the complex zeros of analytic functions. The third stage uses an evolution curve, giving the single-wavelength reflectance as a function of film thickness. We illustrate the process using practical examples drawn from recent studies of films of amorphous silicon, hydrogenated carbon, and hydrogenated silicon.

84 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed work on In2O3:Sn films prepared by reactive e−beam evaporation of In2 O3 with up to 9 mol'% SnO2 onto heated glass.
Abstract: We review work on In2O3:Sn films prepared by reactive e‐beam evaporation of In2O3 with up to 9 mol % SnO2 onto heated glass. These films have excellent spectrally selective properties when the deposition rate is ∼0.2 nm/s, the substrate temperature is ≳150 °C, and the oxygen pressure is ∼5×10−4 Torr. Optimized coatings have crystallite dimensions ≳50 nm and a C‐type rare‐earth oxide structure. We cover electromagnetic properties as recorded by spectrophotometry in the 0.2–50‐μm range, by X‐band microwave reflectance, and by dc electrical measurements. Hall‐effect data are included. An increase of the Sn content is shown to have several important effects: the semiconductor band gap is shifted towards the ultraviolet, the luminous transmittance remains high, the infrared reflectance increases to a high value beyond a certain wavelength which shifts towards the visible, phonon‐induced infrared absorption bands vanish, the microwave reflectance goes up, and the dc resisitivity drops to ∼2×10−4 Ω cm. The corre...

2,124 citations

Journal ArticleDOI
TL;DR: In this article, the development and application of magnetron sputtering systems for ionized physical vapor deposition (IPVD) is reviewed, and the application of a secondary discharge, inductively coupled plasma magnetron (ICP-MS), microwave amplified magnetron, and self-sustained sputtering (SSS) is discussed as well as the hollow cathode magnetron discharges.

972 citations

Book
29 Apr 2010
TL;DR: Physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing is discussed in this paper.
Abstract: This updated version of the popular handbook further explains all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the new edition remains on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications, with additional information to support the original material. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called 'war stories', to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language. This title is fully revised and updated to include the latest developments in PVD process technology. It includes 'War stories' drawn from the author's extensive experience emphasize important points in development and manufacturing. Appendices include listings of periodicals and professional societies, terms and acronyms, and material on transferring technology between R&D and manufacturing.

783 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show the prospects of electrical discharge machining (EDM) technology by interrelating recent achievements in fundamental studies on EDM with newly developed advanced application technologies.

782 citations

Journal ArticleDOI
TL;DR: In this paper, the preparation and properties of amorphous carbon and hydrogenated amorphized carbon, often known as diamond-like carbon, have been discussed and models of the electronic structure and mechanical properties are used to relate the physical properties to the atomic structure.
Abstract: This paper revies the preparation and properties of hard forms of amorphous carbon and hydrogenated amorphous carbon, often known as diamond-like carbon. Properties such as the hydrogen content, sp 3 content, optical gap, refractive index, hardness, elastic modulus and friction and their dependence on the deposition conditions are described. Models of the electronic structure and mechanical properties are used to relate the physical properties to the atomic structure.

692 citations