Author

# Roger Penrose

Other affiliations: University College London, King's College London, Birkbeck, University of London ...read more

Bio: Roger Penrose is an academic researcher from University of Oxford. The author has contributed to research in topic(s): General relativity & Quantum gravity. The author has an hindex of 78, co-authored 201 publication(s) receiving 39379 citation(s). Previous affiliations of Roger Penrose include University College London & King's College London.

##### Papers published on a yearly basis

##### Papers

More filters

••

01 Jul 1955TL;DR: A generalization of the inverse of a non-singular matrix is described in this paper as the unique solution of a certain set of equations, which is used here for solving linear matrix equations, and for finding an expression for the principal idempotent elements of a matrix.

Abstract: This paper describes a generalization of the inverse of a non-singular matrix, as the unique solution of a certain set of equations. This generalized inverse exists for any (possibly rectangular) matrix whatsoever with complex elements. It is used here for solving linear matrix equations, and among other applications for finding an expression for the principal idempotent elements of a matrix. Also a new type of spectral decomposition is given.

3,502 citations

•

01 Jan 1984

TL;DR: The calculus of 2-spinors was introduced and systematically developed in this article, which leads not only to a deeper understanding of the structure of space-time, but also provides shortcuts to some very tedious calculations.

Abstract: This volume introduces and systematically develops the calculus of 2-spinors. This is the first detailed exposition of this technique which leads not only to a deeper understanding of the structure of space-time, but also provides shortcuts to some very tedious calculations. Many results are given here for the first time.

2,122 citations

••

TL;DR: In this paper, a spinor affine connection is proposed for general relativity by means of a tetrad or spinor formalism, which is applied to two problems in radiationtheory; a concise proof of a theorem of Goldberg and Sachs and a description of the asymptotic behavior of the Riemann tensor and metric tensor, for outgoing gravitational radiation.

Abstract: A new approach to general relativity by means of a tetrad or spinor formalism is presented. The essential feature of this approach is the consistent use of certain complex linear combinations of Ricci rotation coefficients which give, in effect, the spinor affine connection. It is applied to two problems in radiationtheory; a concise proof of a theorem of Goldberg and Sachs and a description of the asymptotic behavior of the Riemann tensor and metric tensor, for outgoing gravitational radiation.

2,105 citations

••

1,570 citations

••

TL;DR: In this article, a new theorem on space-time singularities is presented which largely incorporates and generalizes the previously known results and applies if the universe is spatially closed or there is an object undergoing relativistic gravitational collapse (existence of a trapped surface).

Abstract: A new theorem on space-time singularities is presented which largely incorporates and generalizes the previously known results. The theorem implies that space-time singularities are to be expected if either the universe is spatially closed or there is an ‘object’ undergoing relativistic gravitational collapse (existence of a trapped surface) or there is a point p whose past null cone encounters sufficient matter that the divergence of the null rays through p changes sign somewhere to the past of p (i. e. there is a minimum apparent solid angle, as viewed from p for small objects of given size). The theorem applies if the following four physical assumptions are made: (i) Einstein’s equations hold (with zero or negative cosmological constant), (ii) the energy density is nowhere less than minus each principal pressure nor less than minus the sum of the three principal pressures (the ‘energy condition’), (iii) there are no closed timelike curves, (iv) every timelike or null geodesic enters a region where the curvature is not specially alined with the geodesic. (This last condition would hold in any sufficiently general physically realistic model.) In common with earlier results, timelike or null geodesic incompleteness is used here as the indication of the presence of space-time singularities. No assumption concerning existence of a global Cauchy hypersurface is required for the present theorem.

1,469 citations

##### Cited by

More filters

••

TL;DR: In this article, it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature, which leads to a slow decrease in the mass of the black hole and to its eventual disappearance.

Abstract: In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\(\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K\) where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

10,022 citations

••

[...]

TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.

Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,363 citations

••

TL;DR: In this paper, the concept of black-hole entropy was introduced as a measure of information about a black hole interior which is inaccessible to an exterior observer, and it was shown that the entropy is equal to the ratio of the black hole area to the square of the Planck length times a dimensionless constant of order unity.

Abstract: There are a number of similarities between black-hole physics and thermodynamics. Most striking is the similarity in the behaviors of black-hole area and of entropy: Both quantities tend to increase irreversibly. In this paper we make this similarity the basis of a thermodynamic approach to black-hole physics. After a brief review of the elements of the theory of information, we discuss black-hole physics from the point of view of information theory. We show that it is natural to introduce the concept of black-hole entropy as the measure of information about a black-hole interior which is inaccessible to an exterior observer. Considerations of simplicity and consistency, and dimensional arguments indicate that the black-hole entropy is equal to the ratio of the black-hole area to the square of the Planck length times a dimensionless constant of order unity. A different approach making use of the specific properties of Kerr black holes and of concepts from information theory leads to the same conclusion, and suggests a definite value for the constant. The physical content of the concept of black-hole entropy derives from the following generalized version of the second law: When common entropy goes down a black hole, the common entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity of this version of the second law is supported by an argument from information theory as well as by several examples.

5,831 citations

••

Bell Labs

^{1}TL;DR: In this paper, it was shown that a quantum mechanical computer can solve integer factorization problem in a finite power of O(log n) time, where n is the number of elements in a given integer.

Abstract: were proposed in the early 1980’s [Benioff80] and shown to be at least as powerful as classical computers an important but not surprising result, since classical computers, at the deepest level, ultimately follow the laws of quantum mechanics. The description of quantum mechanical computers was formalized in the late 80’s and early 90’s [Deutsch85][BB92] [BV93] [Yao93] and they were shown to be more powerful than classical computers on various specialized problems. In early 1994, [Shor94] demonstrated that a quantum mechanical computer could efficiently solve a well-known problem for which there was no known efficient algorithm using classical computers. This is the problem of integer factorization, i.e. testing whether or not a given integer, N, is prime, in a time which is a finite power of o (logN) . ----------------------------------------------

5,636 citations

••

TL;DR: Recognition-by-components (RBC) provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition.

Abstract: The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recognition-by-components (RBC), is that a modest set of generalized-cone components, called geons (N £ 36), can be derived from contrasts of five readily detectable properties of edges in a two-dimensiona l image: curvature, collinearity, symmetry, parallelism, and cotermination. The detection of these properties is generally invariant over viewing position an$ image quality and consequently allows robust object perception when the image is projected from a novel viewpoint or is degraded. RBC thus provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition: The constraints toward regularization (Pragnanz) characterize not the complete object but the object's components. Representational power derives from an allowance of free combinations of the geons. A Principle of Componential Recovery can account for the major phenomena of object recognition: If an arrangement of two or three geons can be recovered from the input, objects can be quickly recognized even when they are occluded, novel, rotated in depth, or extensively degraded. The results from experiments on the perception of briefly presented pictures by human observers provide empirical support for the theory. Any single object can project an infinity of image configurations to the retina. The orientation of the object to the viewer can vary continuously, each giving rise to a different two-dimensional projection. The object can be occluded by other objects or texture fields, as when viewed behind foliage. The object need not be presented as a full-colored textured image but instead can be a simplified line drawing. Moreover, the object can even be missing some of its parts or be a novel exemplar of its particular category. But it is only with rare exceptions that an image fails to be rapidly and readily classified, either as an instance of a familiar object category or as an instance that cannot be so classified (itself a form of classification).

5,316 citations