scispace - formally typeset
Search or ask a question
Author

Roger Penrose

Bio: Roger Penrose is an academic researcher from University of Oxford. The author has contributed to research in topics: General relativity & Quantum gravity. The author has an hindex of 78, co-authored 201 publications receiving 39379 citations. Previous affiliations of Roger Penrose include University College London & King's College London.


Papers
More filters
Book
01 Jan 1984
TL;DR: The geometry of world-vectors and spin vectors has been studied in this paper, where the authors introduce the concept of spinor algebra and spinors and world-tensors.
Abstract: Preface 1. The geometry of world-vectors and spin-vectors 2. Abstract indices and spinor algebra 3. Spinors and world-tensors 4. Differentiation and curvature 5. Fields in space-time Appendix References Subject and author index Index of symbols.

266 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that domains of dependence can be characterized in terms of ideal points, and this makes possible an extension of the domain-of-dependence concept to causal spaces.
Abstract: A prescription is given for attaching to a space-time M , subject only to a causality condition, a collection of additional ‘ideal points’. Some of these represent ‘points at infinity’, others ‘singular points’. In particular, for asymptotically simple space-times, the ideal points can be interpreted as the boundary at conformal infinity. The construction is based entirely on the causal structure of M , and so leads to the introduction of ideal points also in a broad class of causal spaces. It is shown that domains of dependence can be characterized in terms of ideal points, and this makes possible an extension of the domain-of-dependence concept to causal spaces. A suggestion is made for assigning a topology to M together with its ideal points. This specifies some singular-point structure for a wide range of possible space-times.

264 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue that the case for "gravitizing" quantum theory is at least as strong as that for quantizing gravity, and that the principles of general relativity must influence, and actually change, the very formalism of quantum mechanics.
Abstract: This paper argues that the case for “gravitizing” quantum theory is at least as strong as that for quantizing gravity. Accordingly, the principles of general relativity must influence, and actually change, the very formalism of quantum mechanics. Most particularly, an “Einsteinian”, rather than a “Newtonian” treatment of the gravitational field should be adopted, in a quantum system, in order that the principle of equivalence be fully respected. This leads to an expectation that quantum superpositions of states involving a significant mass displacement should have a finite lifetime, in accordance with a proposal previously put forward by Diosi and the author.

254 citations

Journal ArticleDOI
01 Jan 1959

252 citations

Journal ArticleDOI
TL;DR: In this article, a concise expression for the solution of the zero rest-mass field equations, for each spin (s = 0, 1/2, 1,...), in terms of an arbitrary complex analytic functionf(Zα) (homogeneous of degree −2s −2), is given.
Abstract: The formalism of twistors [the ‘spinors’ for the group O(2,4)] is employed to give a concise expression for the solution of the zero rest-mass field equations, for each spin (s=0, 1/2, 1, ...), in terms of an arbitrary complex analytic functionf(Zα) (homogeneous of degree −2s −2). The four complex variablesZα are the components of a twistor. In terms of twistor space (C-picture) it is analytic structure which takes the place of field equations in ordinary Minkowski space-time (M-picture). By requiring that the singularities off(Zα) form a disconnected pair of regions in the upper half of twistor space, fields of positive frequency are generated.

252 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature, which leads to a slow decrease in the mass of the black hole and to its eventual disappearance.
Abstract: In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\(\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K\) where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

10,923 citations

Journal ArticleDOI
TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.
Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,949 citations

Journal ArticleDOI
TL;DR: In this paper, the concept of black-hole entropy was introduced as a measure of information about a black hole interior which is inaccessible to an exterior observer, and it was shown that the entropy is equal to the ratio of the black hole area to the square of the Planck length times a dimensionless constant of order unity.
Abstract: There are a number of similarities between black-hole physics and thermodynamics. Most striking is the similarity in the behaviors of black-hole area and of entropy: Both quantities tend to increase irreversibly. In this paper we make this similarity the basis of a thermodynamic approach to black-hole physics. After a brief review of the elements of the theory of information, we discuss black-hole physics from the point of view of information theory. We show that it is natural to introduce the concept of black-hole entropy as the measure of information about a black-hole interior which is inaccessible to an exterior observer. Considerations of simplicity and consistency, and dimensional arguments indicate that the black-hole entropy is equal to the ratio of the black-hole area to the square of the Planck length times a dimensionless constant of order unity. A different approach making use of the specific properties of Kerr black holes and of concepts from information theory leads to the same conclusion, and suggests a definite value for the constant. The physical content of the concept of black-hole entropy derives from the following generalized version of the second law: When common entropy goes down a black hole, the common entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity of this version of the second law is supported by an argument from information theory as well as by several examples.

6,591 citations

Proceedings ArticleDOI
Lov K. Grover1
01 Jul 1996
TL;DR: In this paper, it was shown that a quantum mechanical computer can solve integer factorization problem in a finite power of O(log n) time, where n is the number of elements in a given integer.
Abstract: were proposed in the early 1980’s [Benioff80] and shown to be at least as powerful as classical computers an important but not surprising result, since classical computers, at the deepest level, ultimately follow the laws of quantum mechanics. The description of quantum mechanical computers was formalized in the late 80’s and early 90’s [Deutsch85][BB92] [BV93] [Yao93] and they were shown to be more powerful than classical computers on various specialized problems. In early 1994, [Shor94] demonstrated that a quantum mechanical computer could efficiently solve a well-known problem for which there was no known efficient algorithm using classical computers. This is the problem of integer factorization, i.e. testing whether or not a given integer, N, is prime, in a time which is a finite power of o (logN) . ----------------------------------------------

6,335 citations

Journal ArticleDOI
TL;DR: Recognition-by-components (RBC) provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition.
Abstract: The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recognition-by-components (RBC), is that a modest set of generalized-cone components, called geons (N £ 36), can be derived from contrasts of five readily detectable properties of edges in a two-dimensiona l image: curvature, collinearity, symmetry, parallelism, and cotermination. The detection of these properties is generally invariant over viewing position an$ image quality and consequently allows robust object perception when the image is projected from a novel viewpoint or is degraded. RBC thus provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition: The constraints toward regularization (Pragnanz) characterize not the complete object but the object's components. Representational power derives from an allowance of free combinations of the geons. A Principle of Componential Recovery can account for the major phenomena of object recognition: If an arrangement of two or three geons can be recovered from the input, objects can be quickly recognized even when they are occluded, novel, rotated in depth, or extensively degraded. The results from experiments on the perception of briefly presented pictures by human observers provide empirical support for the theory. Any single object can project an infinity of image configurations to the retina. The orientation of the object to the viewer can vary continuously, each giving rise to a different two-dimensional projection. The object can be occluded by other objects or texture fields, as when viewed behind foliage. The object need not be presented as a full-colored textured image but instead can be a simplified line drawing. Moreover, the object can even be missing some of its parts or be a novel exemplar of its particular category. But it is only with rare exceptions that an image fails to be rapidly and readily classified, either as an instance of a familiar object category or as an instance that cannot be so classified (itself a form of classification).

5,464 citations