scispace - formally typeset
Search or ask a question
Author

Roger Penrose

Bio: Roger Penrose is an academic researcher from University of Oxford. The author has contributed to research in topics: General relativity & Quantum gravity. The author has an hindex of 78, co-authored 201 publications receiving 39379 citations. Previous affiliations of Roger Penrose include University College London & King's College London.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of asymmetric perturbations in test electromagnetic fields in an extended Reissner-Nordstrom background is investigated, with the aid of computer calculations, and it is found that instabilities in the test field arise at the inner (Cauchy or anti-event) horizon, though not at the event horizon.
Abstract: The question of the effect of asynumetries in gravitational collapse is investigated by considerations of test electromagnetic fields in an extended Reissner-Nordstrom background. It is found, with ths aid of computer calculations, that instabilities in the test field arise at the inner (Cauchy or anti-event) horizon, though not at the ouier (event) horizon. Thus it is reasonable to infer that in the full coupled Einstein-Maxwell theory the inner horizon will not survive as a non-singular bypersurface when asymmetric perturbations are present, but will instead become a space-time curvature singularity.

224 citations

Journal Article
TL;DR: In this paper, the authors proposed a self-collapse model for brain microtubules, where the mass-energy difference among the separated states of tubulins reaches a threshold related to quantum gravity.
Abstract: Features of consciousness difficult to understand in terms of conventional neuroscience have evoked application of quantum theory, which describes the fundamental behavior of matter and energy. In this paper we propose that aspects of quantum theory (e.g. quantum coherence) and of a newly proposed physical phenomenon of quantum wave function “self-collapse” (objective reduction: OR - Penrose, 1994) are essential for consciousness, and occur in cytoskeletal microtubules and other structures within each of the brain's neurons. The particular characteristics of microtubules suitable for quantum effects include their crystal-like lattice structure, hollow inner core, organization of cell function and capacity for information processing. We envisage that conformational states of microtubule subunits (tubulins) are coupled to internal quantum events, and cooperatively interact (compute) with other tubulins. We further assume that macroscopic coherent superposition of quantum-coupled tubulin conformational states occurs throughout significant brain volumes and provides the global binding essential to consciousness. We equate the emergence of the microtubule quantum coherence with pre-conscious processing which grows (for up to 500 ms) until the mass-energy difference among the separated states of tubulins reaches a threshold related to quantum gravity. According to the arguments for OR put forth in Penrose (1994), superpositioned states each have their own space-time geometries. When the degree of coherent mass-energy difference leads to sufficient separation of space-time geometry, the system must choose and decay (reduce, collapse) to a single universe state. In this way, a transient superposition of slightly differing space-time geometries persists until an abrupt quantum → classical reduction occurs. Unlike the random, “subjective reduction” (SR, or R) of standard quantum theory caused by observation or environmental entanglement, the OR we propose in microtubules is a self-collapse and it results in particular patterns of microtubule-tubulin conformational states that regulate neuronal activities including synaptic functions. Possibilities and probabilities for post-reduction tubulin states are influenced by factors including attachments of microtubule-associated proteins (MAPs) acting as “nodes” which tune and “orchestrate” the quantum oscillations. We thus term the self-tuning OR process in microtubules “orchestrated objective reduction” (“Orch OR”), and calculate an estimate for the number of tubulins (and neurons) whose coherence for relevant time periods (e.g. 500 ms) will elicit Orch OR. In providing a connection among (1) pre-conscious to conscious transition, (2) fundamental space-time notions, (3) non-computability, and (4) binding of various (time scale and spatial) reductions into an instantaneous event (“conscious now”), we believe Orch OR in brain microtubules is the most specific and plausible model for consciousness yet proposed.

217 citations

Journal ArticleDOI
TL;DR: Cosmic censorship is discussed in this paper in various facets and it is concluded that rather little clear-cut progress has been made to date, and that the question is still very much open.
Abstract: Cosmic censorship is discussed in its various facets. It is concluded that rather little clear-cut progress has been made to date, and that the question is still very much open.

205 citations

Journal ArticleDOI
TL;DR: A reprinting of a paper by Roger Penrose, first published in a volume of conference proceedings in 1964, no longer easily accessible, in which he first presented the now-standard description of asymptotically flat spacetimes with the help of a conformal mapping, now called a Penrose transform, has been selected by the Editors of General Relativity and Gravitation for republication in the Golden Oldies series of the journal.
Abstract: This is a reprinting of a paper by Roger Penrose, first published in a volume of conference proceedings in 1964, no longer easily accessible, in which he first presented the now-standard description of asymptotically flat spacetimes with the help of a conformal mapping, now called a Penrose transform. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by Helmut Friedrich.

195 citations

Journal ArticleDOI
TL;DR: In this paper, the problems posed for inflationary cosmological models by the large-scale homogeneity of the universe and the second law of thermodynamics are considered theoretically, and the analysis of Penrose (1979, 1981, 1988, and 1989) are summarized and illustrated with graphs and diagrams.
Abstract: The problems posed for inflationary cosmological models by (1) the large-scale homogeneity of the universe and (2) the second law of thermodynamics are considered theoretically. The analyses of Penrose (1979, 1981, 1988, and 1989) are summarized and illustrated with graphs and diagrams. Particular attention is given to the definition of entropy in the cosmological context, gravitational entropy, the low entropy of the big bang, and the Weyl curvature hypothesis. 23 refs.

158 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature, which leads to a slow decrease in the mass of the black hole and to its eventual disappearance.
Abstract: In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature\(\frac{{h\kappa }}{{2\pi k}} \approx 10^{ - 6} \left( {\frac{{M_ \odot }}{M}} \right){}^ \circ K\) where κ is the surface gravity of the black hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 1015 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law:S+1/4A never decreases whereS is the entropy of matter outside black holes andA is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon.

10,923 citations

Journal ArticleDOI
TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.
Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,949 citations

Journal ArticleDOI
TL;DR: In this paper, the concept of black-hole entropy was introduced as a measure of information about a black hole interior which is inaccessible to an exterior observer, and it was shown that the entropy is equal to the ratio of the black hole area to the square of the Planck length times a dimensionless constant of order unity.
Abstract: There are a number of similarities between black-hole physics and thermodynamics. Most striking is the similarity in the behaviors of black-hole area and of entropy: Both quantities tend to increase irreversibly. In this paper we make this similarity the basis of a thermodynamic approach to black-hole physics. After a brief review of the elements of the theory of information, we discuss black-hole physics from the point of view of information theory. We show that it is natural to introduce the concept of black-hole entropy as the measure of information about a black-hole interior which is inaccessible to an exterior observer. Considerations of simplicity and consistency, and dimensional arguments indicate that the black-hole entropy is equal to the ratio of the black-hole area to the square of the Planck length times a dimensionless constant of order unity. A different approach making use of the specific properties of Kerr black holes and of concepts from information theory leads to the same conclusion, and suggests a definite value for the constant. The physical content of the concept of black-hole entropy derives from the following generalized version of the second law: When common entropy goes down a black hole, the common entropy in the black-hole exterior plus the black-hole entropy never decreases. The validity of this version of the second law is supported by an argument from information theory as well as by several examples.

6,591 citations

Proceedings ArticleDOI
Lov K. Grover1
01 Jul 1996
TL;DR: In this paper, it was shown that a quantum mechanical computer can solve integer factorization problem in a finite power of O(log n) time, where n is the number of elements in a given integer.
Abstract: were proposed in the early 1980’s [Benioff80] and shown to be at least as powerful as classical computers an important but not surprising result, since classical computers, at the deepest level, ultimately follow the laws of quantum mechanics. The description of quantum mechanical computers was formalized in the late 80’s and early 90’s [Deutsch85][BB92] [BV93] [Yao93] and they were shown to be more powerful than classical computers on various specialized problems. In early 1994, [Shor94] demonstrated that a quantum mechanical computer could efficiently solve a well-known problem for which there was no known efficient algorithm using classical computers. This is the problem of integer factorization, i.e. testing whether or not a given integer, N, is prime, in a time which is a finite power of o (logN) . ----------------------------------------------

6,335 citations

Journal ArticleDOI
TL;DR: Recognition-by-components (RBC) provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition.
Abstract: The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recognition-by-components (RBC), is that a modest set of generalized-cone components, called geons (N £ 36), can be derived from contrasts of five readily detectable properties of edges in a two-dimensiona l image: curvature, collinearity, symmetry, parallelism, and cotermination. The detection of these properties is generally invariant over viewing position an$ image quality and consequently allows robust object perception when the image is projected from a novel viewpoint or is degraded. RBC thus provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition: The constraints toward regularization (Pragnanz) characterize not the complete object but the object's components. Representational power derives from an allowance of free combinations of the geons. A Principle of Componential Recovery can account for the major phenomena of object recognition: If an arrangement of two or three geons can be recovered from the input, objects can be quickly recognized even when they are occluded, novel, rotated in depth, or extensively degraded. The results from experiments on the perception of briefly presented pictures by human observers provide empirical support for the theory. Any single object can project an infinity of image configurations to the retina. The orientation of the object to the viewer can vary continuously, each giving rise to a different two-dimensional projection. The object can be occluded by other objects or texture fields, as when viewed behind foliage. The object need not be presented as a full-colored textured image but instead can be a simplified line drawing. Moreover, the object can even be missing some of its parts or be a novel exemplar of its particular category. But it is only with rare exceptions that an image fails to be rapidly and readily classified, either as an instance of a familiar object category or as an instance that cannot be so classified (itself a form of classification).

5,464 citations