scispace - formally typeset
Search or ask a question
Author

Roger R. Anderson

Bio: Roger R. Anderson is an academic researcher from University of Iowa. The author has contributed to research in topics: Plasmasphere & Waves in plasmas. The author has an hindex of 64, co-authored 197 publications receiving 13500 citations. Previous affiliations of Roger R. Anderson include Kyoto University & Kanazawa University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an empirical model of equatorial electron density in the magnetosphere covering the L range 2.25-8.9043 was presented for application to the local time interval 00-15 MLT, and a way to extend the model to the 15-24 MLT period is presented.
Abstract: Attention is given to an empirical model of equatorial electron density in the magnetosphere covering the L range 2.25-8. Although the model is primarily intended for application to the local time interval 00-15 MLT, a way to extend the model to the 15-24-MLT period is presented. The model describes, in piecewise fashion, the 'saturated' plasmasphere, the region of steep plasmapause gradients, and the plasma trough. Within the plasmasphere the model profile can be expressed as logne - Sigma-xi, where x1 = -0.3145L + 3.9043 is the principal or 'reference' term, and additional terms account for: a solar cycle variation with a peak at solar maximum; an annual variation with a December maximum; and a semiannual variation with equinoctial maxima.

787 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present CRRES data on the spatial distribution of chorus emissions during active conditions and calculate the pitch angle and energy diffusion rates in three magnetic local time (MLT) sectors and obtain a timescale for acceleration.
Abstract: [1] Electron acceleration inside the Earth's magnetosphere is required to explain increases in the ∼MeV radiation belt electron flux during magnetically disturbed periods. Recent studies show that electron acceleration by whistler mode chorus waves becomes most efficient just outside the plasmapause, near L = 4.5, where peaks in the electron phase space density are observed. We present CRRES data on the spatial distribution of chorus emissions during active conditions. The wave data are used to calculate the pitch angle and energy diffusion rates in three magnetic local time (MLT) sectors and to obtain a timescale for acceleration. We show that chorus emissions in the prenoon sector accelerate electrons most efficiently at latitudes above 15° for equatorial pitch angles between 20° and 60°. As electrons drift around the Earth, they are scattered to large pitch angles and further accelerated by chorus on the nightside in the equatorial region. The timescale to accelerate electrons by whistler mode chorus and increase the flux at 1 MeV by an order of magnitude is approximately 1 day, in agreement with satellite observations during the recovery phase of storms. During wave acceleration the electrons undergo many drift orbits and the resulting pitch angle distributions are energy-dependent. Chorus scattering should produce pitch angle distributions that are either flat-topped or butterfly-shaped. The results provide strong support for the wave acceleration theory.

622 citations

Journal ArticleDOI
TL;DR: In this article, a survey of wave data from the CRRES Plasma Wave Experiment for lower band (0.1-0.5f(ce)) and upper band ( 0.5-1.0f(c)) chorus was presented to assess whether these waves could play an important role in the acceleration of a seed population of electrons to relativistic energies during and following geomagnetic storms.
Abstract: Intense interest currently exists in determining the roles played by various wave-particle interactions in the acceleration of electrons to relativistic energies during/following geomagnetic storms. Here we present a survey of wave data from the CRRES Plasma Wave Experiment for lower band (0.1-0.5f(ce)) and upper band (0.5-1.0f(ce)) chorus, f(ce) being the electron gyrofrequency, to assess whether these waves could play an important role in the acceleration of a seed population of electrons to relativistic energies during and following geomagnetic storms. Outside of the plasmapause the chorus emissions are largely substorm-dependent, and all chorus emissions are enhanced when substorm activity is enhanced. The equatorial chorus (/ lambda (m) / 300 nT) with average amplitudes typically >0.5 mV m(-1) predominantly in the region 3 15 degrees) is strongest in the lower band during active conditions, with average amplitudes typically >0.5 mV m(-1) in the region 3 < L < 7 over a range of local times on the dayside, principally in the range 0600-1500 MLT, Consistent with wave generation in the horns of the magnetosphere. An inner population of weak, substorm-independent emissions with average amplitudes generally < 0.2 mV m(-1) are seen in both bands largely inside L = 4 on the nightside during quiet (AE < 100 nT) and moderate (100 nT < AE < 300 nT) conditions. These emissions lie inside the plasmapause and are attributed to signals from lightning and ground-based VLF transmitters. We conclude that the significant increases in chorus amplitudes seen outside of the plasmapause during substorms support the theory of electron acceleration by whistler mode chorus in that region. The results suggest that electron acceleration by whistle mode chorus during/following geomagnetic storms can only be effective when there are periods of prolonged substorm activity following the main phase of the geomagnetic storm.

509 citations

Journal ArticleDOI
TL;DR: In this article, a statistical analysis of over 800 EMIC wave events observed on the CRRES spacecraft is performed to establish whether scattering can occur at geophysically interesting energies (less than or equal to 2 MeV).
Abstract: Electromagnetic ion cyclotron (EMIC) waves which propagate at frequencies below the proton gyrofrequency can undergo cyclotron resonant interactions with relativistic electrons in the outer radiation belt and cause pitch-angle scattering and electron loss to the atmosphere. Typical storm-time wave amplitudes of 1-10 nT cause strong diffusion scattering which may lead to significant relativistic electron loss at energies above the minimum energy for resonance, E-min. A statistical analysis of over 800 EMIC wave events observed on the CRRES spacecraft is performed to establish whether scattering can occur at geophysically interesting energies (less than or equal to2 MeV). While E-min is well above 2 MeV for the majority of these events, it can fall below 2 MeV in localized regions of high plasma density and/or low magnetic field (f(pe)/f(ce,eq) > 10) for wave frequencies just below the hydrogen or helium ion gyrofrequencies. These lower energy scattering events, which are mainly associated with resonant L-mode waves, are found within the magnetic local time range 1300 4.5. The average wave spectral intensity of these events (4-5 nT(2)/Hz) is sufficient to cause strong diffusion scattering. The spatial confinement of these events, together with the limited set of these waves that resonate with less than or equal to2 MeV electrons, suggest that these electrons are only subject to strong scattering over a small fraction of their drift orbit. Consequently, drift-averaged scattering lifetimes are expected to lie in the range of several hours to a day. EMIC wave scattering should therefore significantly affect relativistic electron dynamics during a storm. The waves that resonate with the similar toMeV electrons are produced by low-energy (similar tokeV) ring current protons, which are expected to be injected into the inner magnetosphere during enhanced convection events.

430 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the combined Release and Radiation Effects Satellite (CRRES) sweep frequency receiver data to develop an empirical model of the plasmasphere and trough number density.
Abstract: Combined Release and Radiation Effects Satellite (CRRES) sweep frequency receiver data were used to develop an empirical model of the plasmasphere and trough number density The over 1000 CRRES orbits provided good statistical coverage of all local times between an L shell of 3 to 7 The CRRES density data were separated into plasmaspheric-like and trough-like by assuming a minimum density value for the plasmasphere as a function of L shell For the plasmasphere the average number density (in cm−3) as a function of L shell (3 ≤ L ≤ 7) was found to be: np = 1390 (3/L)48 ± 440 (3/L)36 For the trough the average number density (in cm−3) as a function of L-shell (3 ≤ L ≤ 7) and magnetic local time (0 ≤ LT ≤ 24) was found to be nt = l24 (3/L)40 + 36(3/L)35 cos({LT-[77(3/L)20+12]}π/12) ± {78 (3/L)47 + 17 (3/L)37 cos[(LT - 22)π/12]} No clear dependence on magnetic activity was found for either density model This empirical model is an improvement over earlier models in that it is continuous in local time and can be used to track densities based on refilling history The model standard deviations are representative of either early time or late time refilling of the trough or newly filled or saturated plasmaspheric densities

409 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the theory of first order Fermi acceleration at collisionless astrophysical shock fronts is reviewed and it is argued that the wave amplitude is probably non-linear within sufficiently strong astrophysical shocks.

1,881 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the actual knowledge of the biogenic emissions of some volatile organic compounds (VOCs), i.e., isoprene, terpenes, alkanes, alkenes, carbonyls, alcohols, esters, and acids, is presented.
Abstract: This overview compiles the actual knowledge of the biogenic emissions of some volatile organic compounds (VOCs), i.e., isoprene, terpenes, alkanes, alkenes, alcohols, esters, carbonyls, and acids. We discuss VOC biosynthesis, emission inventories, relations between emission and plant physiology as well as temperature and radiation, and ecophysiological functions. For isoprene and monoterpenes, an extended summary of standard emission factors, with data related to the plant genus and species, is included. The data compilation shows that we have quite a substantial knowledge of the emission of isoprene and monoterpenes, including emission rates, emission regulation, and biosynthesis. The situation is worse in the case of numerous other compounds (other VOCs or OVOCs) being emitted by the biosphere. This is reflected in the insufficient knowledge of emission rates and biological functions. Except for the terpenoids, only a limited number of studies of OVOCs are available; data are summarized for alkanes, alkenes, carbonyls, alcohols, acids, and esters. In addition to closing these gaps of knowledge, one of the major objectives for future VOC research is improving our knowledge of the fate of organic carbon in the atmosphere, ending up in oxidation products and/or as aerosol particles.

1,687 citations

Journal ArticleDOI
17 Feb 2005-Nature
TL;DR: The demonstration of a continuous-wave silicon Raman laser is demonstrated and it is shown that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide.
Abstract: Achieving optical gain and/or lasing in silicon has been one of the most challenging goals in silicon-based photonics because bulk silicon is an indirect bandgap semiconductor and therefore has a very low light emission efficiency. Recently, stimulated Raman scattering has been used to demonstrate light amplification and lasing in silicon. However, because of the nonlinear optical loss associated with two-photon absorption (TPA)-induced free carrier absorption (FCA), until now lasing has been limited to pulsed operation. Here we demonstrate a continuous-wave silicon Raman laser. Specifically, we show that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide. The laser cavity is formed by coating the facets of the silicon waveguide with multilayer dielectric films. We have demonstrated stable single mode laser output with side-mode suppression of over 55 dB and linewidth of less than 80 MHz. The lasing threshold depends on the p-i-n reverse bias voltage and the laser wavelength can be tuned by adjusting the wavelength of the pump laser. The demonstration of a continuous-wave silicon laser represents a significant milestone for silicon-based optoelectronic devices.

1,267 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state.
Abstract: In this review we will focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Ulysses’ high latitude observations and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

1,212 citations

Journal ArticleDOI
TL;DR: The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport.
Abstract: The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected.

1,060 citations