scispace - formally typeset
Search or ask a question
Author

Roger Stupp

Bio: Roger Stupp is an academic researcher from Northwestern University. The author has contributed to research in topics: Temozolomide & Glioma. The author has an hindex of 93, co-authored 430 publications receiving 63025 citations. Previous affiliations of Roger Stupp include Merck & Co. & University of St. Gallen.


Papers
More filters
Journal ArticleDOI
TL;DR: The concept proposes that tumors that are currently lumped together based on common morphologic features can be subclassified in a way that the resulting subentities are more homogeneous, for example, in molecular signatures and will therefore be amenable to selective therapeutic interventions.
Abstract: Purpose This review will address the current state of individualized cancer therapy for glioblastoma. Glioblastomas are highly malignant primary brain tumors presumably originating from neuroglial progenitor cells. Median survival is less than 1 year. Design Recent developments in the morphologic, clinical, and molecular classification of glioblastoma were reviewed, and their impact on clinical decision making was analyzed. Results Glioblastomas can be classified by morphology, clinical characteristics, complex molecular signatures, single biomarkers, or imaging parameters. Some of these characteristics, including age and Karnofsky Performance Scale score, provide important prognostic information. In contrast, few markers help to choose between various treatment options. Promoter methylation of the O-methylguanine methyltransferase gene seems to predict benefit from alkylating agent chemotherapy. Hence, it is used as an entry criterion for alkylator-free experimental combination therapy with radiotherapy. Screening for a specific type of epidermal growth factor receptor mutation is currently being explored as a biomarker for selecting patients for vaccination. Positron emission tomography for the detection of ανβ3/5 integrins could be used to select patients for treatment with anti-integrin antiangiogenic approaches. Discussion Despite extensive efforts at defining biological markers as a basis for selecting therapies, most treatment decisions for glioblastoma patients are still based on age and performance status. However, several ongoing clinical trials may enrich the repertoire of criteria for clinical decision making in the very near future. The concept of individualized or personalized targeted cancer therapy has gained significant attention throughout oncology. Yet, data in support of such an approach to glioblastoma, the most malignant subtype of glioma, are limited, and personalized medicine plays a minor role in current clinical neuro-oncology practice. In essence, this concept proposes that tumors that are currently lumped together based on common morphologic features can be subclassified in a way that the resulting subentities are more homogeneous, for example, in molecular signatures and will therefore be amenable to selective therapeutic interventions. At present, the major "biomarkers" used to allocate treatment in glioblastoma are age and Karnofsky Performance Scale score, and these markers have so far survived all efforts at more sophisticated approaches to the management of this disease. Treatment allocation basically means intensity of treatment, especially the use of the standard-of-care or radiotherapy alone beyond age 65 to 70 years or below a Karnofsky Performance Scale score of 60.

71 citations

Journal ArticleDOI
TL;DR: The addition of infusional paclitaxel and hyperfractionated RT to FHX is feasible and the high locoregional control rate of this regimen justifies further investigation in previously untreated patients.
Abstract: PURPOSEWe have previously demonstrated high locoregional control rates in patients with poor-prognosis head and neck cancer using fluorouracil (5-FU), hydroxyurea (HU), and concomitant radiotherapy (RT) (FHX). In the trial reported here, we added paclitaxel to the FHX base and used hyperfractionated RT to determine the maximum-tolerated dose (MTD), toxicities, and response rate in a poor-prognosis group of patients.METHODSFifty-five patients who had either failed to respond to prior RT (n = 25) or surgery, had a coexistent or prior second malignancy, or who had unresectable or metastatic disease and an expected 2-year survival rate less than 10%, were treated. Chemoradiotherapy consisted of 2 Gy on days 2 to 6 (once-daily RT cohorts) or 1.5 Gy twice a day (hyperfractionated cohorts). Simultaneous HU (500 or 1,000 mg twice per day for 11 doses) and infusional 5-FU (600-800 mg/m2/d for 5 days) were given along with infusional paclitaxel at escalating doses of 5 to 25 mg/m2/d for 5 days. Granulocyte colony-s...

70 citations

Journal ArticleDOI
TL;DR: Ulray-mediated BBB disruption enhanced paclitaxel brain concentration by 3- to 5-fold for both formulations and further augmented the therapeutic benefit of ABX and is a feasible and effective treatment for glioma.
Abstract: Purpose: Paclitaxel shows little benefit in the treatment of glioma due to poor penetration across the blood–brain barrier (BBB). Low-intensity pulsed ultrasound (LIPU) with microbubble injection transiently disrupts the BBB allowing for improved drug delivery to the brain. We investigated the distribution, toxicity, and efficacy of LIPU delivery of two different formulations of paclitaxel, albumin-bound paclitaxel (ABX) and paclitaxel dissolved in cremophor (CrEL-PTX), in preclinical glioma models. Experimental Design: The efficacy and biodistribution of ABX and CrEL-PTX were compared with and without LIPU delivery. Antiglioma activity was evaluated in nude mice bearing intracranial patient-derived glioma xenografts (PDX). Paclitaxel biodistribution was determined in sonicated and nonsonicated nude mice. Sonications were performed using a 1 MHz LIPU device (SonoCloud), and fluorescein was used to confirm and map BBB disruption. Toxicity of LIPU-delivered paclitaxel was assessed through clinical and histologic examination of treated mice. Results: Despite similar antiglioma activity in vitro, ABX extended survival over CrEL-PTX and untreated control mice with orthotropic PDX. Ultrasound-mediated BBB disruption enhanced paclitaxel brain concentration by 3- to 5-fold for both formulations and further augmented the therapeutic benefit of ABX. Repeated courses of LIPU-delivered CrEL-PTX and CrEL alone were lethal in 42% and 37.5% of mice, respectively, whereas similar delivery of ABX at an equivalent dose was well tolerated. Conclusions: Ultrasound delivery of paclitaxel across the BBB is a feasible and effective treatment for glioma. ABX is the preferred formulation for further investigation in the clinical setting due to its superior brain penetration and tolerability compared with CrEL-PTX.

70 citations

Journal ArticleDOI
TL;DR: It is shown that treating MGMT unmethylated tumors with TMZ was detrimental, while patients with methylated tumors fared best if treated with TMZ (even in the absence of RT), and two trials confirm the predictive value of the MGMT status.
Abstract: Ten years ago we established O-6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation as the first predictive marker in neuro-oncology, and the strongest prognostic factor for treatment outcome in patients with newly diagnosed glioblastoma (GBM). But rather than embracing a marker that allows identification and selection of patients likely to derive some benefit from the addition of alkylating agent chemotherapy, we have been challenging the validity of the findings, are still striving for the one perfect molecular test, and are treating the majority of patients with temozolomide (TMZ) chemotherapy irrespective of the tumor’s MGMT promoter status. Aren′t the data convincing enough, or is it because of the lack of effective alternative treatments to be offered to patients with an unmethylated MGMT promoter? Following a large body of mechanistic evidence for the role of MGMT in repairing lesions of alkylating agents, MGMT expression was advanced as a resistance factor in glioma in the 1990s. Subsequently, seminal work by Esteller and colleagues demonstrated a correlation with promoter methylation of the MGMT gene in an analysis of samples from patients in Spain treated with chemotherapy comprising the alkylating agent carmustine (BCNU). We confirmed this observation in an unplanned analysis of patients treated within our phase II trial with upfront TMZ. Finally, in 2005, our retrospective analysis of prospectively treated patients within a randomized phase III trial demonstrated a clear predictive value of MGMT promoter methylation status. Since then, numerous additional trials have consistently demonstrated the prognostic effect of the MGMT status, but as all patients are now receiving upfront TMZ chemotherapy, the predictive value could not be evaluated again. The one exception is elderly glioblastoma patients in whom the relative benefit of adding chemotherapy is of lesser magnitude. Two randomized trials compared single-agent TMZ chemotherapy versus radiotherapy (RT). In this more fragile patient population it was shown that treating MGMT unmethylated tumors with TMZ was detrimental, while patients with methylated tumors fared best if treated with TMZ (even in the absence of RT). These 2 trials confirm the predictive value of the MGMT status. Together, the data allow the conclusion that alkylating agent chemotherapy is of marginal benefit, if any, for patients with MGMT unmethylated GBM. By continuing to treat the majority of MGMT unmethylated patients with TMZ, we are missing an opportunity to do better. Innovative treatment approaches with novel agents in combination with RT may provide a better chance for improved outcome than adhering to the use of an agent with marginal activity. From the patient’s point of view, it may be perceived as “wasting the last opportunity” to try a potentially efficacious new agent. Clearly, this patient population would benefit most from drugs with other mechanisms of action. To date, only a few trials have selected patients and assigned treatments according to MGMT promoter methylation status. – 9 Adding a new drug or agent on top of the previously established combined modality regimen may cause undue toxicity or drug interaction, thus requiring dose reduction and treatment with potentially subtherapeutic doses. As an example, the addition of polyglutamated paclitaxel to the combination of TMZ/ RT led to early discontinuation due to prohibitive toxicity, but this resulted in a follow-up trial in MGMT unmethylated patients only, omitting TMZ during RT (www.clinicaltrials.gov: NCT01402063). Still, patients with an unmethylated MGMT promoter are in greatest need of improved treatments and may benefit from the opportunity to replace TMZ by novel agents. In a randomized European Organisation for Research and Treatment of Cancer (EORTC) trial for patients with an unmethylated MGMT promoter only, temsirolimus was combined with RT followed by temsirolimus maintenance and compared with standard TMZ/RT followed by TMZ. Similarly, Herrlinger and colleagues randomized patients with an unmethylated MGMT promoter to either standard TMZ/RT followed by TMZ or RT combined with irinotecan and bevacizumab followed by maintenance irinotecan/bevacizumab. Although both trials failed to show improved outcome compared with the standard, it is important to note that dropping TMZ was not detrimental (Table 1). Treatment selection according to a molecular marker is intimately dependent on the validity and reproducibility of the molecular test. Standardizing the MGMTassay and determining the

69 citations

Journal ArticleDOI
TL;DR: This new NRG-GBM-RPA model improves outcome stratification over both the current RTOG RPA model and MGMT promoter methylation, respectively, for patients with GBM treated with radiation and temozolomide and was biologically validated in an independent data set.
Abstract: Importance There is a need for a more refined, molecularly based classification model for glioblastoma (GBM) in the temozolomide era. Objective To refine the existing clinically based recursive partitioning analysis (RPA) model by incorporating molecular variables. Design, Setting, and Participants NRG Oncology RTOG 0525 specimens (n = 452) were analyzed for protein biomarkers representing key pathways in GBM by a quantitative molecular microscopy-based approach with semiquantitative immunohistochemical validation. Prognostic significance of each protein was examined by single-marker and multimarker Cox regression analyses. To reclassify the prognostic risk groups, significant protein biomarkers on single-marker analysis were incorporated into an RPA model consisting of the same clinical variables (age, Karnofsky Performance Status, extent of resection, and neurologic function) as the existing RTOG RPA. The new RPA model (NRG-GBM-RPA) was confirmed using traditional immunohistochemistry in an independent data set (n = 176). Main Outcomes and Measures Overall survival (OS). Results In 452 specimens, MGMT (hazard ratio [HR], 1.81; 95% CI, 1.37-2.39; P P = .02), c-Met (HR, 1.53; 95% CI, 1.06-2.23; P = .02), pmTOR (HR, 0.76; 95% CI, 0.60-0.97; P = .03), and Ki-67 (HR, 1.40; 95% CI, 1.10-1.78; P = .007) protein levels were found to be significant on single-marker multivariate analysis of OS. To refine the existing RPA, significant protein biomarkers together with clinical variables (age, Karnofsky Performance Status, extent of resection, and neurological function) were incorporated into a new model. Of 166 patients used for the new NRG-GBM-RPA model, 97 (58.4%) were male (mean [SD] age, 55.7 [12.0] years). Higher MGMT protein level was significantly associated with decreased MGMT promoter methylation and vice versa (1425.1 for methylated vs 1828.0 for unmethylated; P P MGMT promoter methylation (HR, 1.77; 95% CI, 1.28-2.44; P MGMT promoter methylation in NRG Oncology RTOG 0525. The prognostic significance of the NRG-GBM-RPA was subsequently confirmed in an independent data set (n = 176). Conclusions and Relevance This new NRG-GBM-RPA model improves outcome stratification over both the current RTOG RPA model and MGMT promoter methylation, respectively, for patients with GBM treated with radiation and temozolomide and was biologically validated in an independent data set. The revised RPA has the potential to contribute to improving the accurate assessment of prognostic groups in patients with GBM treated with radiation and temozolomide and to influence clinical decision making. Trial Registration clinicaltrials.gov Identifier:NCT00304031

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity.
Abstract: methods Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. results A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients.

16,653 citations

Journal ArticleDOI
TL;DR: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the US.
Abstract: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors (malignant and non-malignant) and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates (incidence and mortality) are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.79 (Malignant AAAIR=7.08, non-Malignant AAAIR=16.71). This rate was higher in females compared to males (26.31 versus 21.09), Blacks compared to Whites (23.88 versus 23.83), and non-Hispanics compared to Hispanics (24.23 versus 21.48). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors), and the most common non-malignant tumor was meningioma (38.3% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.14. An estimated 83,830 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020 (24,970 malignant and 58,860 non-malignant). There were 81,246 deaths attributed to malignant brain and other CNS tumors between 2013 and 2017. This represents an average annual mortality rate of 4.42. The 5-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 23.5% and for a non-malignant brain and other CNS tumor was 82.4%.

9,802 citations

Journal ArticleDOI
23 Oct 2008-Nature
TL;DR: The interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated gliobeasts, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.
Abstract: Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas - the most common type of primary adult brain cancer - and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol- 3- OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.

6,761 citations

Journal ArticleDOI
TL;DR: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up, and a benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years.
Abstract: BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS: Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS: Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING: EORTC, NCIC, Nelia and Amadeo Barletta Foundation, Schering-Plough.

6,161 citations

Journal ArticleDOI
TL;DR: Patients with glioblastoma containing a methylated MGMT promoter benefited from temozolomide, whereas those who did not have a methylation of theMGMT promoter did notHave such a benefit and were assigned to only radiotherapy.
Abstract: background Epigenetic silencing of the MGMT (O 6 -methylguanine–DNA methyltransferase) DNArepair gene by promoter methylation compromises DNA repair and has been associated with longer survival in patients with glioblastoma who receive alkylating agents. methods We tested the relationship between MGMT silencing in the tumor and the survival of patients who were enrolled in a randomized trial comparing radiotherapy alone with radiotherapy combined with concomitant and adjuvant treatment with temozolomide. The methylation status of the MGMT promoter was determined by methylation-specific polymerase-chain-reaction analysis. results The MGMT promoter was methylated in 45 percent of 206 assessable cases. Irrespective of treatment, MGMT promoter methylation was an independent favorable prognostic factor (P<0.001 by the log-rank test; hazard ratio, 0.45; 95 percent confidence interval, 0.32 to 0.61). Among patients whose tumor contained a methylated MGMT promoter, a survival benefit was observed in patients treated with temozolomide and radiotherapy; their median survival was 21.7 months (95 percent confidence interval, 17.4 to 30.4), as compared with 15.3 months (95 percent confidence interval, 13.0 to 20.9) among those who were assigned to only radiotherapy (P=0.007 by the log-rank test). In the absence of methylation of the MGMT promoter, there was a smaller and statistically insignificant difference in survival between the treatment groups. conclusions Patients with glioblastoma containing a methylated MGMT promoter benefited from temozolomide, whereas those who did not have a methylated MGMT promoter did not have such a benefit.

6,018 citations