scispace - formally typeset
Search or ask a question
Author

Roger White

Other affiliations: New York University, Lincoln's Inn
Bio: Roger White is an academic researcher from Imperial College London. The author has contributed to research in topics: Nuclear receptor & Corepressor. The author has an hindex of 40, co-authored 70 publications receiving 10158 citations. Previous affiliations of Roger White include New York University & Lincoln's Inn.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that a number of alkylphenolic compounds, used in a variety of commercial products and found in river water, are estrogenic in fish, birds, and mammals and capable of stimulating vitellogenin gene expression in trout hepatocytes, gene transcription in transfected cells, and the growth of breast cancer cell lines.
Abstract: We show that a number of alkylphenolic compounds, used in a variety of commercial products and found in river water, are estrogenic in fish, birds, and mammals. 4-Octylphenol (OP), 4-nonylphenol, 4nonylphenoxycarboxylic acid, and 4-nonylphenoldiethoxylate were each capable of stimulating vitellogenin gene expression in trout hepatocytes, gene transcription in transfected cells, and the growth of breast cancer cell lines. The most potent of the chemicals is OP, which was able to stimulate these biological responses to a similar extent as 17&estradiol itself, albeit at a lOOO-fold greater concentration. The action of alkylphenols is mediated by the estrogen receptor, as their effects depended on its presence and was blocked by estrogen antagonists. OP, 4-nonylphenol, and 4-nonylphenoxycarboxylic acid appear to possess intrinsic estrogenic activity, because thev compete for binding to the estrogen receptor. Moreo&, it is like& that-they interact with a similar region of the hormone-binding domain as 17fi-estradiol, because the mutant receptor G-525R, which is defective in estrogen binding, is also insensitive to OP. Like 17j3-estradiol, OP is capable of stimulating the activity of both transcriptional activation functions, TAF-1 and TAF-2, in the receptor, as judged by analyzing the activitv of the wild-type and mutant r&eptors-in &ansjentlytranifected cells. The significance of our results will depend to a large extent on the degree of exposure of wildlife and humans to these estrogenic alkylphenolic compounds.

1,424 citations

Journal ArticleDOI
TL;DR: The current finding that some phthalate compounds and some food additives are weakly estrogenic in vitro, needs to be supported by further studies on their effects in vivo before any conclusions can be made regarding their possible role in the development of these conditions.
Abstract: Sewage, a complex mixture of organic and inorganic chemicals, is considered to be a major source of environmental pollution. A random screen of 20 organic man-made chemicals present in liquid effluents revealed that half appeared able to interact with the estradiol receptor. This was demonstrated by their ability to inhibit binding of 17 beta-estradiol to the fish estrogen receptor. Further studies, using mammalian estrogen screens in vitro, revealed that the two phthalate esters butylbenzyl phthalate (BBP) and di-n-butylphthalate (DBP) and a food antioxidant, butylated hydroxyanisole (BHA) were estrogenic; however, they were all less estrogenic than the environmental estrogen octylphenol. Phthalate esters, used in the production of various plastics (including PVC), are among the most common industrial chemicals. Their ubiquity in the environment and tendency to bioconcentrate in animal fat are well known. Neither BBP nor DBP were able to act as antagonists, indicating that, in the presence of endogenous estrogens, their overall effect would be cumulative. Recently, it has been suggested that environmental estrogens may be etiological agents in several human diseases, including disorders of the male reproductive tract and breast and testicular cancers. The current finding that some phthalate compounds and some food additives are weakly estrogenic in vitro, needs to be supported by further studies on their effects in vivo before any conclusions can be made regarding their possible role in the development of these conditions.

1,250 citations

Journal ArticleDOI
TL;DR: It is proposed that the conserved region in the C‐terminus of the hormone binding domain between residues 538 and 552 in the mouse oestrogen receptor may be essential for ligand dependent transcriptional activation by other members of the nuclear receptor family.
Abstract: The oestrogen receptor stimulates transcription by means of at least two distinct transcriptional activation domains, TAF-1 in the N-terminal domain and TAF-2 in the hormone binding domain. Here we show that TAF-2 activity requires a region in the C-terminus of the hormone binding domain between residues 538 and 552 in the mouse oestrogen receptor which is conserved among many nuclear hormone receptors. Point mutagenesis of conserved hydrophobic and charged residues significantly reduced ligand dependent transcriptional activation but had no effect on steroid or DNA binding. Mutation of the corresponding residues in the glucocorticoid receptor also abolished transcriptional activation. We therefore propose that the conserved region may be essential for ligand dependent transcriptional activation by other members of the nuclear receptor family.

838 citations

Journal ArticleDOI
23 Mar 1990-Cell
TL;DR: Analysis of sequences in this region revealed that a heptad repeat of hydrophobic residues was conserved in all members of the nuclear receptor superfamily, implying that the steroid binding and dimerization domains overlap.

579 citations

Journal ArticleDOI
TL;DR: Although ligand binding is not required by the estrogen receptor to undergo nucleocytoplasmic shuttling, this process can be disrupted by the binding of a pure antiestrogen.
Abstract: The mouse estrogen receptor was shown to be constantly shuttling between the nucleus and cytoplasm although under steady-state conditions it is detected predominantly in the cell nucleus in both the absence and presence of estradiol. Shuttling was demonstrated by monitoring the transfer of protein between nuclei in heterokaryons and by examining the subcellular distribution of mutant receptors. In the presence of the partial antiestrogen 4-hydroxytamoxifen the receptor was retained in the nucleus whereas it accumulated in the cytoplasm when cells were treated with the pure antiestrogen ICI 182780. The effect of the pure antiestrogen was to inhibit nucleocytoplasmic shuttling of the receptor by blocking its nuclear uptake. Thus although ligand binding is not required by the estrogen receptor to undergo nucleocytoplasmic shuttling, this process can be disrupted by the binding of a pure antiestrogen.

524 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 organic wastewater contaminants (OWCs) in water samples from a network of 139 streams across 30 states during 1999 and 2000 as mentioned in this paper.
Abstract: To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other organic wastewater contaminants (OWCs) in water resources, the U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 OWCs in water samples from a network of 139 streams across 30 states during 1999 and 2000. The selection of sampling sites was biased toward streams susceptible to contamination (i.e. downstream of intense urbanization and livestock production). OWCs were prevalent during this study, being found in 80% of the streams sampled. The compounds detected represent a wide range of residential, industrial, and agricultural origins and uses with 82 of the 95 OWCs being found during this study. The most frequently detected compounds were coprostanol (fecal steroid), cholesterol (plant and animal steroid), N,N-diethyltoluamide (insect repellant), caffeine (stimulant), triclosan (antimicrobial disinfectant), tri(2-chloroethyl)phosphate (fire retardant), and 4-nonylphenol (nonionic detergent metabolite). Measured concentrations for this study were generally low and rarely exceeded drinking-water guidelines, drinking-water health advisories, or aquatic-life criteria. Many compounds, however, do not have such guidelines established. The detection of multiple OWCs was common for this study, with a median of seven and as many as 38 OWCs being found in a given water sample. Little is known about the potential interactive effects (such as synergistic or antagonistic toxicity) that may occur from complex mixtures of OWCs in the environment. In addition, results of this study demonstrate the importance of obtaining data on metabolites to fully understand not only the fate and transport of OWCs in the hydrologic system but also their ultimate overall effect on human health and the environment.

7,036 citations

Journal ArticleDOI
TL;DR: It is concluded that clone 29 cDNA encodes a novel rat ER, which is suggested be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.
Abstract: We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol >> testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.

4,782 citations

Journal ArticleDOI
TL;DR: There is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.

4,397 citations

Journal ArticleDOI
TL;DR: The estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ERα or ERβ protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ERβ complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid are investigated.
Abstract: The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 >> zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 >> genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.

4,078 citations

Journal ArticleDOI
10 Feb 1989-Cell
TL;DR: The location, orientation, and structure of the hormone regulatory elements (HRE) in nine hormonally modulated genes is described and a model for the interaction is proposed in which a dimer of the receptor in head-to-head orientation binds to the inverted symmetry element of the HRE.

3,331 citations