scispace - formally typeset
Search or ask a question
Author

Rokho Kim

Bio: Rokho Kim is an academic researcher. The author has contributed to research in topics: Environmental noise & Risk assessment. The author has an hindex of 2, co-authored 2 publications receiving 710 citations.

Papers
More filters
Book
01 Jan 2011
TL;DR: Policy-makers and their advisers are provided with technical support in their quantitative risk assessment of environmental noise and can use the procedure for estimating burdens presented here to prioritize and plan environmental and public health policies.
Abstract: The health impacts of environmental noise are a growing concern. At least one million healthy life years are lost every year from traffic-related noise in the western part of Europe. This publication summarises the evidence on the relationship between environmental noise and health effects, including cardiovascular disease, cognitive impairment, sleep disturbance, tinnitus, and annoyance. For each one, the environmental burden of disease methodology, based on exposure-response relationship, exposure distribution, background prevalence of disease and disability weights of the outcome, is applied to calculate the burden of disease in terms of disability-adjusted life-years. Data are still lacking for the rest of the WHO European Region. This publication provides policy-makers and their advisers with technical support in their quantitative risk assessment of environmental noise. International, national and local authorities can use the procedure for estimating burdens presented here to prioritize and plan environmental and public health policies.

794 citations

Book Chapter
01 Jan 2011
TL;DR: Health risk assessment for these sources of environmental noise is examined, showing that noise exposure is increasing in Europe compared to other stressors, which are declining.
Abstract: Noise is a major environmental issue, particularly in urban areas, affecting a large number of people. To date, most assessments of the problem of environmental noise have been based on the annoyance it causes to humans, or the extent to which it disturbs various human activities. Assessment of health outcomes potentially related to noise exposure has so far been limited (1). According to preliminary results from the Environmental Burden of Disease (EBD) in Europe project in six European countries (2) reported at the WHO Ministerial Conference held in Parma in March 2010 (3), traffic noise was ranked second among the selected environmental stressors evaluated in terms of their public health impact in six European countries. Further, the trend is that noise exposure is increasing in Europe compared to other stressors (e.g. exposures to second hand smoke, dioxins and benzene), which are declining. In its Guidelines for community noise (4), the WHO defined environmental noise as “noise emitted from all sources except for noise at the industrial workplace”. European Union (EU) Directive 2002/49/EC on the management of environmental noise (5) defines environmental noise as “unwanted or harmful outdoor sound created by human activities, including noise from road, rail, airports and from industrial sites”. The terms community, residential or domestic noise have also been applied to environmental noise, although these terms are not necessarily used consistently. This publication examines health risk assessment for these sources of environmental noise.

19 citations


Cited by
More filters
01 Jan 2013
TL;DR: In this paper, the authors stress the importance of adequate noise prevention and mitigation strategies for public health and stress that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, aff ects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren.
Abstract: Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced haircell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory eff ects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, aff ects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health.

942 citations

Journal ArticleDOI
TL;DR: A systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies shows that terrestrial wildlife responses begin at noise levels of approximately 40’dBA, and 20% of papers documented impacts below 50 dBA.
Abstract: Global increases in environmental noise levels – arising from expansion of human populations, transportation networks, and resource extraction – have catalysed a recent surge of research into the effects of noise on wildlife. Synthesising a coherent understanding of the biological consequences of noise from this literature is challenging. Taxonomic groups vary in auditory capabilities. A wide range of noise sources and exposure levels occur, and many kinds of biological responses have been observed, ranging from individual behaviours to changes in ecological communities. Also, noise is one of several environmental effects generated by human activities, so researchers must contend with potentially confounding explanations for biological responses. Nonetheless, it is clear that noise presents diverse threats to species and ecosystems and salient patterns are emerging to help inform future natural resource-management decisions. We conducted a systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies. Research to date has concentrated predominantly on European and North American species that rely on vocal communication, with approximately two-thirds of the data set focussing on songbirds and marine mammals. The majority of studies documented effects from noise, including altered vocal behaviour to mitigate masking, reduced abundance in noisy habitats, changes in vigilance and foraging behaviour, and impacts on individual fitness and the structure of ecological communities. This literature survey shows that terrestrial wildlife responses begin at noise levels of approximately 40 dBA, and 20% of papers documented impacts below 50 dBA. Our analysis highlights the utility of existing scientific information concerning the effects of anthropogenic noise on wildlife for predicting potential outcomes of noise exposure and implementing meaningful mitigation measures. Future research directions that would support more comprehensive predictions regarding the magnitude and severity of noise impacts include: broadening taxonomic and geographical scope, exploring interacting stressors, conducting larger-scale studies, testing mitigation approaches, standardising reporting of acoustic metrics, and assessing the biological response to noise-source removal or mitigation. The broad volume of existing information concerning the effects of anthropogenic noise on wildlife offers a valuable resource to assist scientists, industry, and natural-resource managers in predicting potential outcomes of noise exposure.

531 citations

Journal ArticleDOI
TL;DR: Evidence from epidemiologic studies demonstrates that environmental noise is associated with an increased incidence of arterial hypertension, myocardial infarction, and stroke, and the importance of noise mitigation strategies for public health is stressed.
Abstract: The role of noise as an environmental pollutant and its impact on health are being increasingly recognized. Beyond its effects on the auditory system, noise causes annoyance and disturbs sleep, and it impairs cognitive performance. Furthermore, evidence from epidemiologic studies demonstrates that environmental noise is associated with an increased incidence of arterial hypertension, myocardial infarction, and stroke. Both observational and experimental studies indicate that in particular night-time noise can cause disruptions of sleep structure, vegetative arousals (e.g. increases of blood pressure and heart rate) and increases in stress hormone levels and oxidative stress, which in turn may result in endothelial dysfunction and arterial hypertension. This review focuses on the cardiovascular consequences of environmental noise exposure and stresses the importance of noise mitigation strategies for public health.

516 citations

Journal ArticleDOI
TL;DR: The results show that there is strong evidence for improved affect as well as on heat reduction from urban natural environments, and guidelines on how public health and well-being could be integrated into implementation of NBS for resilient and liveable urban landscapes and health in a changing climate are provided.

461 citations

Journal ArticleDOI
TL;DR: Based on the available evidence, transportation noise affects objectively measured sleep physiology and subjectively assessed sleep disturbance in adults and for children’s sleep.
Abstract: To evaluate the quality of available evidence on the effects of environmental noise exposure on sleep a systematic review was conducted. The databases PSYCINFO, PubMed, Science Direct, Scopus, Web of Science and the TNO Repository were searched for non-laboratory studies on the effects of environmental noise on sleep with measured or predicted noise levels and published in or after the year 2000. The quality of the evidence was assessed using GRADE criteria. Seventy four studies predominately conducted between 2000 and 2015 were included in the review. A meta-analysis of surveys linking road, rail, and aircraft noise exposure to self-reports of sleep disturbance was conducted. The odds ratio for the percent highly sleep disturbed for a 10 dB increase in Lnight was significant for aircraft (1.94; 95% CI 1.61–2.3), road (2.13; 95% CI 1.82–2.48), and rail (3.06; 95% CI 2.38–3.93) noise when the question referred to noise, but non-significant for aircraft (1.17; 95% CI 0.54–2.53), road (1.09; 95% CI 0.94–1.27), and rail (1.27; 95% CI 0.89–1.81) noise when the question did not refer to noise. A pooled analysis of polysomnographic studies on the acute effects of transportation noise on sleep was also conducted and the unadjusted odds ratio for the probability of awakening for a 10 dBA increase in the indoor Lmax was significant for aircraft (1.35; 95% CI 1.22–1.50), road (1.36; 95% CI 1.19–1.55), and rail (1.35; 95% CI 1.21–1.52) noise. Due to a limited number of studies and the use of different outcome measures, a narrative review only was conducted for motility, cardiac and blood pressure outcomes, and for children’s sleep. The effect of wind turbine and hospital noise on sleep was also assessed. Based on the available evidence, transportation noise affects objectively measured sleep physiology and subjectively assessed sleep disturbance in adults. For other outcome measures and noise sources the examined evidence was conflicting or only emerging. According to GRADE criteria, the quality of the evidence was moderate for cortical awakenings and self-reported sleep disturbance (for questions that referred to noise) induced by traffic noise, low for motility measures of traffic noise induced sleep disturbance, and very low for all other noise sources and investigated sleep outcomes.

352 citations