scispace - formally typeset
Search or ask a question
Author

Roksana Golizadeh-Mojarad

Other affiliations: Intel
Bio: Roksana Golizadeh-Mojarad is an academic researcher from Purdue University. The author has contributed to research in topics: Graphene & Magnetic field. The author has an hindex of 7, co-authored 12 publications receiving 1307 citations. Previous affiliations of Roksana Golizadeh-Mojarad include Intel.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that at a certain gate bias, the impact of the metal on the channel potential profile extends into the channel for more than one-third of the total channel length from both source and drain sides; hence, most of the channel is affected by the metal.
Abstract: We measure the channel potential of a graphene transistor using a scanning photocurrent imaging technique. We show that at a certain gate bias, the impact of the metal on the channel potential profile extends into the channel for more than one-third of the total channel length from both source and drain sides; hence, most of the channel is affected by the metal. The potential barrier between the metal-controlled graphene and bulk graphene channel is also measured at various gate biases. As the gate bias exceeds the Dirac point voltage, VDirac, the original p-type graphene channel turns into a p-n-p channel. When light is focused on the p-n junctions, an impressive external responsivity of 0.001 A/W is achieved, given that only a single layer of atoms are involved in photon detection.

597 citations

Journal ArticleDOI
TL;DR: Simulations based on nonequilibrium Green's function formalism suggest that the origin of this asymmetry in transport in graphene devices doped with poly(ethylene imine) and diazonium salts is imbalanced carrier injection from the graphene electrodes caused by misalignment of the electrode and channel neutrality points.
Abstract: We investigate poly(ethylene imine) and diazonium salts as stable, complementary dopants on graphene. Transport in graphene devices doped with these molecules exhibits asymmetry in electron and hole conductance. The conductance of one carrier is preserved, while the conductance of the other carrier decreases. Simulations based on nonequilibrium Greenʼs function formalism suggest that the origin of this asymmetry is imbalanced carrier injection from the graphene electrodes caused by misalignment of the electrode and channel neutrality points.

445 citations

Journal ArticleDOI
TL;DR: In this paper, a simple phenomenological approach for including dephasing processes in quantum transport models is described, which provides the flexibility of adjusting the degree of phase and momentum relaxation independently that is not currently available in mesoscopic physics and in device simulation while retaining the simplicity of other phenomenological models.
Abstract: The objective of this paper is to describe a simple phenomenological approach for including dephasing processes in quantum transport models. The presented illustrative numerical results show this model provides the flexibility of adjusting the degree of phase and momentum relaxation independently that is not currently available in mesoscopic physics and in device simulation while retaining the simplicity of other phenomenological models.

140 citations

Journal ArticleDOI
TL;DR: In this paper, contact induced gap states in metal-semiconductor Schottky junctions are used to explain the structure dependence of the minimum conductivity observed experimentally, which is not "Ohmic" in origin but arises from a reduced role of contact induced states.
Abstract: The objective of this paper is to point out that contact induced states can help explain the structure dependence of the minimum conductivity observed experimentally. Contact induced states are similar to the well-known metal induced gap states in metal-semiconductor Schottky junctions, which typically penetrate a few atomic lengths into the semiconductor, while the depth of penetration decreases with increasing band gap. However, in graphene we find that these states penetrate a much longer distance of the order of the width of the contacts. As a result, ballistic graphene samples with a length less than their width at Dirac points can exhibit a length-dependent resistance that is not ``Ohmic'' in origin but arises from a reduced role of contact induced states. While earlier theoretical works have shown that ballistic graphene samples can exhibit a minimum conductivity, our numerical results demonstrate that this minimum conductivity depends strongly on the structure and configuration of the channel and contacts. In diffusive samples, our results still show that the contact induced states effect needs to be taken into account in explaining minimum conductivity and its dependence on the structure (two terminal vs four terminal) and configuration used.

71 citations

Journal Article
TL;DR: In this article, contact induced gap states in metal-semiconductor Schottky junctions are used to explain the structure dependence of the minimum conductivity observed experimentally, which is not "Ohmic" in origin but arises from a reduced role of contact induced states.
Abstract: The objective of this paper is to point out that contact induced states can help explain the structure dependence of the minimum conductivity observed experimentally. Contact induced states are similar to the well-known metal induced gap states in metal-semiconductor Schottky junctions, which typically penetrate a few atomic lengths into the semiconductor, while the depth of penetration decreases with increasing band gap. However, in graphene we find that these states penetrate a much longer distance of the order of the width of the contacts. As a result, ballistic graphene samples with a length less than their width at Dirac points can exhibit a length-dependent resistance that is not ``Ohmic'' in origin but arises from a reduced role of contact induced states. While earlier theoretical works have shown that ballistic graphene samples can exhibit a minimum conductivity, our numerical results demonstrate that this minimum conductivity depends strongly on the structure and configuration of the channel and contacts. In diffusive samples, our results still show that the contact induced states effect needs to be taken into account in explaining minimum conductivity and its dependence on the structure (two terminal vs four terminal) and configuration used.

61 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations

Journal ArticleDOI
TL;DR: Graphene and its derivatives are being studied in nearly every field of science and engineering as mentioned in this paper, and recent progress has shown that the graphene-based materials can have a profound impact on electronic and optoelectronic devices, chemical sensors, nanocomposites and energy storage.

3,118 citations

Journal ArticleDOI
24 Jan 2012-ACS Nano
TL;DR: The unique characteristics of incident-light control, prompt photoswitching, and good photoresponsivity from the MoS(2) phototransistor pave an avenue to develop the single-layer semiconducting materials for multifunctional optoelectronic device applications in the future.
Abstract: A new phototransistor based on the mechanically exfoliated single-layer MoS2 nanosheet is fabricated, and its light-induced electric properties are investigated in detail. Photocurrent generated from the phototransistor is solely determined by the illuminated optical power at a constant drain or gate voltage. The switching behavior of photocurrent generation and annihilation can be completely finished within ca. 50 ms, and it shows good stability. Especially, the single-layer MoS2 phototransistor exhibits a better photoresponsivity as compared with the graphene-based device. The unique characteristics of incident-light control, prompt photoswitching, and good photoresponsivity from the MoS2 phototransistor pave an avenue to develop the single-layer semiconducting materials for multifunctional optoelectronic device applications in the future.

3,033 citations

Journal ArticleDOI
TL;DR: An overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of differentTwo-dimensional crystals or of two- dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides are provided.
Abstract: Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides

3,025 citations