scispace - formally typeset
Search or ask a question
Author

Roland Ottensamer

Other affiliations: Graz University of Technology
Bio: Roland Ottensamer is an academic researcher from University of Vienna. The author has contributed to research in topics: Planet & Exoplanet. The author has an hindex of 19, co-authored 81 publications receiving 4005 citations. Previous affiliations of Roland Ottensamer include Graz University of Technology.
Topics: Planet, Exoplanet, Physics, Astrophysics, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
TL;DR: It is shown that CS enables to recover data with a spatial resolution enhanced up to 30% with similar sensitivity compared to the averaging technique proposed by ESA, and provides a new fantastic way to handle multiple observations of the same field view, allowing to recover low level details, which is impossible with standard compression methods.
Abstract: Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper, we investigate how compressed sensing (CS) can provide new insights into astronomical data compression. We first give a brief overview of the compressed sensing theory which provides very simple coding process with low computational cost, thus favoring its use for real-time applications often found onboard space mission. In practical situations, owing to particular observation strategies (for instance, raster scans) astronomical data are often redundant; in that context, we point out that a CS-based compression scheme is flexible enough to account for particular observational strategies. Indeed, we show also that CS provides a new fantastic way to handle multiple observations of the same field view, allowing us to recover low level details, which is impossible with standard compression methods. This kind of CS data fusion concept could lead to an elegant and effective way to solve the problem ESA is faced with, for the transmission to the earth of the data collected by PACS, one of the instruments onboard the Herschel spacecraft which will launched in late 2008/early 2009. We show that CS enables to recover data with a spatial resolution enhanced up to 30% with similar sensitivity compared to the averaging technique proposed by ESA.

285 citations

Journal ArticleDOI
TL;DR: In this article, different morphologies associated to the interaction of the stellar winds of AGB stars and red supergiants with the interstellar medium (ISM) are identified, and basic parameters affecting the morphology are discussed.
Abstract: Aims. Our goal is to study the different morphologies associated to the interaction of the stellar winds of AGB stars and red supergiants with the interstellar medium (ISM) to follow the fate of the circumstellar matter injected into the interstellar medium. Methods. Far-infrared Herschel /PACS images at 70 and 160 μ m of a sample of 78 Galactic evolved stars are used to study the (dust) emission structures developing out of stellar wind-ISM interaction. In addition, two-fluid hydrodynamical simulations of the coupled gas and dust in wind-ISM interactions are used for comparison with the observations. Results. Four distinct classes of wind-ISM interaction (i.e. “fermata ”, “eyes ”, “irregular ”, and “rings ”) are identified, and basic parameters affecting the morphology are discussed. We detect bow shocks for ~40% of the sample and detached rings for ~20%. The total dust and gas mass inferred from the observed infrared emission is similar to the stellar mass loss over a period of a few thousand years, while in most cases it is less than the total ISM mass potentially swept-up by the wind-ISM interaction. De-projected stand-off distances (R 0 ) – defined as the distance between the central star and the nearest point of the interaction region – of the detected bow shocks (“fermata ” and “eyes ”) are derived from the PACS images and compared to previous results, model predictions, and the simulations. All observed bow shocks have stand-off distances smaller than 1 pc. Observed and theoretical stand-off distances are used together to independently derive the local ISM density.Conclusions. Both theoretical (analytical) models and hydrodynamical simulations give stand-off distances for adopted stellar properties that are in good agreement with the measured de-projected stand-off distance of wind-ISM bow shocks. The possible detection of a bow shock – for the distance-limited sample – appears to be governed by its physical size as set roughly by the stand-off distance. In particular the star’s peculiar space velocity and the density of the ISM appear decisive in detecting emission from bow shocks or detached rings. In most cases the derived ISM densities concur with those typical of the warm neutral and ionised gas in the Galaxy, though some cases point towards the presence of cold diffuse clouds. Tentatively, the “eyes ” class objects are associated to (visual) binaries, while the “rings ” generally do not appear to occur for M-type stars, only for C or S-type objects that have experienced a thermal pulse.

213 citations

Journal ArticleDOI
TL;DR: MESS (Mass-loss of Evolved StarS) as discussed by the authors is a guaranteed time key program that uses the PACS and SPIRE instruments on board the Herschel space observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and post-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants.
Abstract: MESS (Mass-loss of Evolved StarS) is a guaranteed time key program that uses the PACS and SPIRE instruments on board the Herschel space observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and post-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants. In total, of order 150 objects are observed in imaging and about 50 objects inspectroscopy. This paper describes the target selection and target list, and the observing strategy. Key science projects are described, and illustrated using results obtained during Herschel’s science demonstration phase. Aperture photometry is given for the 70 AGB and post-AGB stars observed up to October 17, 2010, which constitutes the largest single uniform database of far-IR and sub-mm fluxes for late-type stars.

159 citations

Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and submillimetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m, over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47"x47", resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

127 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Abstract: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55 671 m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

3,359 citations

Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
Matthew Joseph Griffin, Alain Abergel1, A. Abreu, Peter A. R. Ade2  +186 moreInstitutions (27)
TL;DR: The Spectral and Photometric Imaging REceiver (SPIRE) is the Herschel Space Observatory's sub-millimetre camera and spectrometer as discussed by the authors, which is used for image and spectroscopic data acquisition.
Abstract: The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz) The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 03 K The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired The spectrometer has an approximately circular field of view with a diameter of 26' The spectral resolution can be adjusted between 12 and 25 GHz by changing the stroke length of the FTS scan mirror Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 15-2

2,425 citations

Journal ArticleDOI
TL;DR: A simple costless modification to iterative thresholding is introduced making the sparsity–undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures, inspired by belief propagation in graphical models.
Abstract: Compressed sensing aims to undersample certain high-dimensional signals yet accurately reconstruct them by exploiting signal characteristics. Accurate reconstruction is possible when the object to be recovered is sufficiently sparse in a known basis. Currently, the best known sparsity–undersampling tradeoff is achieved when reconstructing by convex optimization, which is expensive in important large-scale applications. Fast iterative thresholding algorithms have been intensively studied as alternatives to convex optimization for large-scale problems. Unfortunately known fast algorithms offer substantially worse sparsity–undersampling tradeoffs than convex optimization. We introduce a simple costless modification to iterative thresholding making the sparsity–undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures. The new iterative-thresholding algorithms are inspired by belief propagation in graphical models. Our empirical measurements of the sparsity–undersampling tradeoff for the new algorithms agree with theoretical calculations. We show that a state evolution formalism correctly derives the true sparsity–undersampling tradeoff. There is a surprising agreement between earlier calculations based on random convex polytopes and this apparently very different theoretical formalism.

2,412 citations