scispace - formally typeset
Search or ask a question
Author

Roland P. S. Kwok

Bio: Roland P. S. Kwok is an academic researcher from Oregon Health & Science University. The author has contributed to research in topics: CREB & CREB-binding protein. The author has an hindex of 8, co-authored 8 publications receiving 4626 citations.

Papers
More filters
Journal ArticleDOI
28 Oct 1993-Nature
TL;DR: It is proposed that CBP may participate in cAMP-regulated gene expression by interacting with the activated phosphorylated form of CREB, which is activated as a result of phosphorylation by protein kinase A7.
Abstract: Cyclic AMP-regulated gene expression frequently involves a DNA element known as the cAMP-regulated enhancer (CRE). Many transcription factors bind to this element, including the protein CREB, which is activated as a result of phosphorylation by protein kinase A. This modification stimulates interaction with one or more of the general transcription factors or, alternatively, allows recruitment of a co-activator. Here we report that CREB phosphorylated by protein kinase A binds specifically to a nuclear protein of M(r) 265K which we term CBP (for CREB-binding protein). Fusion of a heterologous DNA-binding domain to the amino terminus of CBP enables the chimaeric protein to function as a protein kinase A-regulated transcriptional activator. We propose that CBP may participate in cAMP-regulated gene expression by interacting with the activated phosphorylated form of CREB.

2,041 citations

Journal ArticleDOI
21 Jul 1994-Nature
TL;DR: Fluorescence anisotropy measurements are used to define the equi-librium binding parameters of the phosphoCREB:CBP interaction and report here that CBP can activate transcription through a region in its carboxy terminus.
Abstract: The transcription factor CREB binds to a DNA element known as the cAMP-regulated enhancer (CRE). CREB is activated through phosphorylation by protein kinase A (PKA), but precisely how phosphorylation stimulates CREB function is unknown. One model is that phosphorylation may allow the recruitment of coactivators which then interact with basal transcription factors. We have previously identified a nuclear protein of M(r)265K, CBP, that binds specifically to the PKA-phosphorylated form of CREB. We have used fluorescence anisotropy measurements to define the equilibrium binding parameters of the phosphoCREB:CBP interaction and report here that CBP can activate transcription through a region in its carboxy terminus. The activation domain of CBP interacts with the basal transcription factor TFIIB through a domain that is conserved in the yeast coactivator ADA-1 (ref. 8). Consistent with its role as a coactivator, CBP augments the activity of phosphorylated CREB to activate transcription of cAMP-responsive genes.

1,471 citations

Journal ArticleDOI
02 Mar 1995-Nature
TL;DR: The results indicate that the gene repression and cell immortalization functions associated with El A involve the inactivation of a family of related proteins that normally participate in second-messenger-regulated gene expression.
Abstract: The 265K nuclear protein CBP was initially identified as a co-activator for the protein kinase A (PKA)-phosphorylated form of the transcription factor CREB. The domains in CBP that are involved in CREB binding and transcriptional activation are highly related to the adenoviral E1A-associated cellular protein p300 (refs 2, 3), and to two hypothetical proteins from Caenorhabditis elegans, R10E11.1 and K03H1.10 (refs 4 and 5, respectively), whose functions are unknown. Here, we show that CBP and p300 have similar binding affinity for the PKA-phosphorylated form of CREB, and that p300 can substitute for CBP in potentiating CREB-activated gene expression. We find that E1A binds to CBP through a domain conserved with p300 and represses the CREB-dependent co-activator functions of both CBP and p300. Our results indicate that the gene repression and cell immortalization functions associated with E1A involve the inactivation of a family of related proteins that normally participate in second-messenger-regulated gene expression.

574 citations

Journal ArticleDOI
18 Apr 1996-Nature
TL;DR: It is shown that Tax can activate both the HTLV-1 and consensus cellular CREs, and it is proposed that this activation may occur through mechanisms that are differentially dependent on CREB phosphorylation.
Abstract: The Tax protein of human T-lymphotropic virus (HTLV)-1 activates expression of the HTLV-1 long terminal repeat through a DNA element that resembles the cellular cyclic AMP-regulated enhancer (CRE). Tax contains a transcriptional activation domain, but its ability to activate gene expression depends on interactions with cellular CRE-binding proteins such as CREB. Whether Tax can activate the expression of cellular CRE-containing genes has been controversial. Here we show that Tax can activate both the HTLV-1 and consensus cellular CREs, and propose that this activation may occur through mechanisms that are differentially dependent on CREB phosphorylation. Tax not only increases the binding of CREB to the viral CRE but also recruits the transcriptional co-activator CBP in a manner independent of CREB phosphorylation. In contrast, association of Tax with the cellular CRE occurs through CBP which, in turn, is recruited only in the presence of phosphorylated CREB.

339 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the N terminus of p73 directly interacts with the N-terminal CH1 domain of p300/CBP to activate transcription.
Abstract: The newly identified p53 homolog p73 mimics the transcriptional function of p53. We have investigated the regulation of p73's transcriptional activity by p300/CREB binding protein (CBP). p73-p300 complexes were identified in HeLa cell extracts by cofractionation and coimmunoprecipitation assays. The p73-p300 interaction was confirmed in vitro by glutathione S-transferase–protein association assays and in vivo by coimmunoprecipitating the overexpressed p300 and p73 in human p53-free small-cell lung carcinoma H1299 or osteosarcoma Saos-2 cells. The N terminus but not the N-terminal truncation of p73 bound to the CH1 domain (amino acids [aa] 350 to 450) of p300/CBP. Accordingly, this p73 N-terminal deletion was unable to activate transcription or to induce apoptosis. Overexpression of either p300 or CBP stimulated transcription mediated by p73 but not its N-terminally deleted mutant in vivo. The N-terminal fragment from aa 19 to 597, but not the truncated fragment from aa 242 to 1700 of p300, reduced p73-mediated transcription markedly. p73-dependent transcription or apoptosis was partially impaired in either p300- or CBP-deficient human breast carcinoma MCF-7 or H1299 cells, suggesting that both coactivators mediate transcription by p73 in cells. These results demonstrate that the N terminus of p73 directly interacts with the N-terminal CH1 domain of p300/CBP to activate transcription.

91 citations


Cited by
More filters
Journal ArticleDOI
12 Sep 1997-Science
TL;DR: The discovery of a STAT in Drosophila, and most recently in Dictyostelium discoideum, implies an ancient evolutionary origin for this dual-function set of proteins.
Abstract: STATs (signal transducers and activators of transcription) are a family of latent cytoplasmic proteins that are activated to participate in gene control when cells encounter various extracellular polypeptides. Biochemical and molecular genetic explorations have defined a single tyrosine phosphorylation site and, in a dimeric partner molecule, an Src homology 2 (SH2) phosphotyrosine-binding domain, a DNA interaction domain, and a number of protein-protein interaction domains (with receptors, other transcription factors, the transcription machinery, and perhaps a tyrosine phosphatase). Mouse genetics experiments have defined crucial roles for each known mammalian STAT. The discovery of a STAT in Drosophila , and most recently in Dictyostelium discoideum , implies an ancient evolutionary origin for this dual-function set of proteins.

3,860 citations

Journal ArticleDOI
TL;DR: Many gene sequences in eukaryotic genomes encode entire proteins or large segments of proteins that lack a well-structured three-dimensional fold, whereas others constitute flexible linkers that have a role in the assembly of macromolecular arrays.
Abstract: Many gene sequences in eukaryotic genomes encode entire proteins or large segments of proteins that lack a well-structured three-dimensional fold. Disordered regions can be highly conserved between species in both composition and sequence and, contrary to the traditional view that protein function equates with a stable three-dimensional structure, disordered regions are often functional, in ways that we are only beginning to discover. Many disordered segments fold on binding to their biological targets (coupled folding and binding), whereas others constitute flexible linkers that have a role in the assembly of macromolecular arrays.

3,599 citations

Journal ArticleDOI
TL;DR: This work has shown that direct expression of PPAR mRNAs in the absence of a specific carrier gene results in down-regulation in the activity of other PPARs, and these properties are consistent with those of a “spatially aggregating substance”.
Abstract: I. Introduction II. Molecular Aspects A. PPAR isotypes: identity, genomic organization and chromosomal localization B. DNA binding properties C. PPAR ligand-binding properties D. Alternative pathways for PPAR activation E. PPAR-mediated transactivation properties III. Physiological Aspects A. Differential expression of PPAR mRNAs B. PPAR target genes and functions in fatty acid metabolism C. PPARs and control of inflammatory responses D. PPARs and atherosclerosis E. PPARs and the development of the fetal epidermal permeability barrier F. PPARs, carcinogenesis, and control of the cell cycle IV. Conclusions

3,028 citations

Journal ArticleDOI
27 Jan 1995-Cell
TL;DR: Although the use of PP inhibitors shows that there is significant basal PP activity in cells, it has become apparent that the activities of PPs are regulated in a sophisticated manner by a combination of targeting and regulatory subunits and by specific inhibitors.

2,863 citations

Journal ArticleDOI
29 Nov 1996-Cell
TL;DR: It is demonstrated that p300/CBP acetylates nucleosomes in concert with PCAF, a novel class of acetyltransferases in that it does not have the conserved motif found among various other acetyl transferases.

2,863 citations