Author

# Roland W. Lewis

Other affiliations: Tianjin University, University of Wales

Bio: Roland W. Lewis is an academic researcher from Swansea University. The author has contributed to research in topics: Finite element method & Mixed finite element method. The author has an hindex of 51, co-authored 238 publications receiving 11202 citations. Previous affiliations of Roland W. Lewis include Tianjin University & University of Wales.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1998

TL;DR: In this paper, the Methode des elements finis finis was used to define sols non satures, and a reference record was created on 2004-09-07, modified on 2016-08-08.

Abstract: Keywords: Methode des elements finis ; Sols non satures ; Consolidation Reference Record created on 2004-09-07, modified on 2016-08-08

1,329 citations

••

TL;DR: The visco-plastic model is established as a realistic general description of soil behaviour as well as a computationally convenient fiction for solving any properly formulated plasticity problem as discussed by the authors.

Abstract: The visco-plastic model is established as a realistic general description of soil behaviour as well as a computationally convenient fiction for solving any properly formulated plasticity problem. T...

948 citations

•

28 May 2004

TL;DR: In this paper, the authors proposed a method for heat transfer in a composite slab with the Galerkin method and the Finite Element Method (FEM) to solve the heat transfer problem.

Abstract: Preface. 1 Introduction. 1.1 Importance of Heat Transfer. 1.2 Heat Transfer Modes. 1.3 The Laws of Heat Transfer. 1.4 Formulation of Heat Transfer Problems. 1.4.1 Heat transfer from a plate exposed to solar heat flux. 1.4.2 Incandescent lamp. 1.4.3 Systems with a relative motion and internal heat generation. 1.5 Heat Conduction Equation. 1.6 Boundary and Initial Conditions. 1.7 Solution Methodology. 1.8 Summary. 1.9 Exercise. Bibliography. 2 Some Basic Discrete Systems. 2.1 Introduction. 2.2 Steady State Problems. 2.2.1 Heat flow in a composite slab. 2.2.2 Fluid flow network. 2.2.3 Heat transfer in heat sinks (combined conduction-convection). 2.2.4 Analysis of a heat exchanger. 2.3 Transient Heat Transfer Problem (Propagation Problem). 2.4 Summary. 2.5 Exercise. Bibliography. 3 The Finite Elemen t Method. 3.1 Introduction. 3.2 Elements and Shape Functions. 3.2.1 One-dimensional linear element. 3.2.2 One-dimensional quadratic element. 3.2.3 Two-dimensional linear triangular elements. 3.2.4 Area coordinates. 3.2.5 Quadratic triangular elements. 3.2.6 Two-dimensional quadrilateral elements. 3.2.7 Isoparametric elements. 3.2.8 Three-dimensional elements. 3.3 Formulation (Element Characteristics). 3.3.1 Ritz method (Heat balance integral method-Goodman's method). 3.3.2 Rayleigh-Ritz method (Variational method). 3.3.3 The method of weighted residuals. 3.3.4 Galerkin finite element method. 3.4 Formulation for the Heat Conduction Equation. 3.4.1 Variational approach. 3.4.2 The Galerkin method. 3.5 Requirements for Interpolation Functions. 3.6 Summary. 3.7 Exercise. Bibliography. 4 Steady State Heat Conduction in One Dimension. 4.1 Introduction. 4.2 Plane Walls. 4.2.1 Homogeneous wall. 4.2.2 Composite wall. 4.2.3 Finite element discretization. 4.2.4 Wall with varying cross-sectional area. 4.2.5 Plane wall with a heat source: solution by linear elements. 4.2.6 Plane wall with a heat source: solution by quadratic elements. 4.2.7 Plane wall with a heat source: solution by modified quadratic equations (static condensation). 4.3 Radial Heat Flow in a Cylinder. 4.3.1 Cylinder with heat source. 4.4 Conduction-Convection Systems. 4.5 Summary. 4.6 Exercise. Bibliography. 5 Steady State Heat Conduction in Multi-dimensions. 5.1 Introduction. 5.2 Two-dimensional Plane Problems. 5.2.1 Triangular elements. 5.3 Rectangular Elements. 5.4 Plate with Variable Thickness. 5.5 Three-dimensional Problems. 5.6 Axisymmetric Problems. 5.6.1 Galerkin's method for linear triangular axisymmetric elements. 5.7 Summary. 5.8 Exercise. Bibliography. 6 Transient Heat Conduction Analysis. 6.1 Introduction. 6.2 Lumped Heat Capacity System. 6.3 Numerical Solution. 6.3.1 Transient governing equations and boundary and initial conditions. 6.3.2 The Galerkin method. 6.4 One-dimensional Transient State Problem. 6.4.1 Time discretization using the Finite Difference Method (FDM). 6.4.2 Time discretization using the Finite Element Method (FEM). 6.5 Stability. 6.6 Multi-dimensional Transient Heat Conduction. 6.7 Phase Change Problems-Solidification and Melting. 6.7.1 The governing equations. 6.7.2 Enthalpy formulation. 6.8 Inverse Heat Conduction Problems. 6.8.1 One-dimensional heat conduction. 6.9 Summary. 6.10 Exercise. Bibliography. 7 Convection Heat Transfer 173 7.1 Introduction. 7.1.1 Types of fluid-motion-assisted heat transport. 7.2 Navier-Stokes Equations. 7.2.1 Conservation of mass or continuity equation. 7.2.2 Conservation of momentum. 7.2.3 Energy equation. 7.3 Non-dimensional Form of the Governing Equations. 7.3.1 Forced convection. 7.3.2 Natural convection (Buoyancy-driven convection). 7.3.3 Mixed convection. 7.4 The Transient Convection-diffusion Problem. 7.4.1 Finite element solution to convection-diffusion equation. 7.4.2 Extension to multi-dimensions. 7.5 Stability Conditions. 7.6 Characteristic-based Split (CBS) Scheme. 7.6.1 Spatial discretization. 7.6.2 Time-step calculation. 7.6.3 Boundary and initial conditions. 7.6.4 Steady and transient solution methods. 7.7 Artificial Compressibility Scheme. 7.8 Nusselt Number, Drag and Stream Function. 7.8.1 Nusselt number. 7.8.2 Drag calculation. 7.8.3 Stream function. 7.9 Mesh Convergence. 7.10 Laminar Isothermal Flow. 7.10.1 Geometry, boundary and initial conditions. 7.10.2 Solution. 7.11 Laminar Non-isothermal Flow. 7.11.1 Forced convection heat transfer. 7.11.2 Buoyancy-driven convection heat transfer. 7.11.3 Mixed convection heat transfer. 7.12 Introduction to Turbulent Flow. 7.12.1 Solution procedure and result. 7.13 Extension to Axisymmetric Problems. 7.14 Summary. 7.15 Exercise. Bibliography. 8 Convection in Porous Media. 8.1 Introduction. 8.2 Generalized Porous Medium Flow Approach. 8.2.1 Non-dimensional scales. 8.2.2 Limiting cases. 8.3 Discretization Procedure. 8.3.1 Temporal discretization. 8.3.2 Spatial discretization. 8.3.3 Semi- and quasi-implicit forms. 8.4 Non-isothermal Flows. 8.5 Forced Convection. 8.6 Natural Convection. 8.6.1 Constant porosity medium. 8.7 Summary. 8.8 Exercise. Bibliography. 9 Some Examples of Fluid Flow and Heat Transfer Problems. 9.1 Introduction. 9.2 Isothermal Flow Problems. 9.2.1 Steady state problems. 9.2.2 Transient flow. 9.3 Non-isothermal Benchmark Flow Problem. 9.3.1 Backward-facing step. 9.4 Thermal Conduction in an Electronic Package. 9.5 Forced Convection Heat Transfer From Heat Sources. 9.6 Summary. 9.7 Exercise. Bibliography. 10 Implementation of Computer Code. 10.1 Introduction. 10.2 Preprocessing. 10.2.1 Mesh generation. 10.2.2 Linear triangular element data. 10.2.3 Element size calculation. 10.2.4 Shape functions and their derivatives. 10.2.5 Boundary normal calculation. 10.2.6 Mass matrix and mass lumping. 10.2.7 Implicit pressure or heat conduction matrix. 10.3 Main Unit. 10.3.1 Time-step calculation. 10.3.2 Element loop and assembly. 10.3.3 Updating solution. 10.3.4 Boundary conditions. 10.3.5 Monitoring steady state. 10.4 Postprocessing. 10.4.1 Interpolation of data. 10.5 Summary. Bibliography. A Green's Lemma. B Integration Formulae. B.1 Linear Triangles. B.2 Linear Tetrahedron. C Finite Element Assembly Procedure. D Simplified Form of the Navier-Stokes Equations. Index.

653 citations

••

28 Jan 2005TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).

Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations

••

TL;DR: In this article, the authors present a general approach to transient heat conduction problems with non-linear physical properties and boundary conditions using an unconditionally stable central algorithm which does not require iteration.

Abstract: The paper presents a generally applicable approach to transient heat conduction problems with non-linear physical properties and boundary conditions. An unconditionally stable central algorithm is used which does not require iteration.
Several examples involving phase change (where latent heat effects are incorporated as heat capacity variations) and non-linear radiation boundary conditions are given which show very good accuracy.
Simple triangular elements are used throughout but the formulation is generally valid and not restricted to any single type of element.

506 citations

##### Cited by

More filters

••

TL;DR: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high energy storage density and the isothermal nature of the storage process.

Abstract: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.

4,482 citations

••

01 Jan 1997

TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.

Abstract: The boundary layer equations for plane, incompressible, and steady flow are
$$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

01 Jan 1937

1,390 citations

••

TL;DR: In this article, the fundamental design principles of highly thermally conductive composites were discussed and the key factors influencing the thermal conductivity of polymers, such as chain structure, crystallinity, crystal form, orientation of polymer chains, and orientation of ordered domains in both thermoplastics and thermosets were addressed.

1,359 citations

••

TL;DR: Zhu et al. as discussed by the authors provided a summary of the studies based on discrete particle simulation in the past two decades or so, with emphasis on the microdynamics including packing/flow structure and particle-particle, particle-fluid and particle wall interaction forces.

1,253 citations