scispace - formally typeset
Search or ask a question
Author

Rolf D. Reitz

Bio: Rolf D. Reitz is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Combustion & Diesel engine. The author has an hindex of 93, co-authored 611 publications receiving 36618 citations. Previous affiliations of Rolf D. Reitz include Princeton University & Courant Institute of Mathematical Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the RNG κ-e turbulence model derived by Yakhot and Orszag (1986) based on the Renormalization Group theory has been modified and applied to variable-density engine flows in the present study.
Abstract: The RNG κ-e turbulence model derived by Yakhot and Orszag (1986) based on the Renormalization Group theory has been modified and applied to variable-density engine flows in the present study. The original RNG-based turbulence transport approximations were developed formally for an incompressible flow. In order to account for flow compressibility the RNG e-equation is modified and closed through an isotropic rapid distortion analysis. Computations were made of engine compressing/expanding flows and the results were compared with available experimental observations in a production diesel engine geometry. The modified RNG κ-e model was also applied to diesel spray combustion computations. It is shown that the use of the RNG model is warranted for spray combustion modeling since the ratio of the turbulent to mean-strain time scales is appreciable due to spray-generated mean flow gradients, and the model introduces a term to account for these effects. Large scale flow structures are predicted which ar...

1,200 citations

Journal ArticleDOI
TL;DR: In this paper, a dual fuel engine combustion technology called Reactivity Controlled Compression Ignition (RCCI) is highlighted, since it provides more efficient control over the combustion process and has the capability to lower fuel use and pollutant emissions.

889 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present current scientific knowledge on the subject of liquid jet deblurring and discuss the unresolved scientific issues, including the physical mechanisms involved in the deblating process.
Abstract: A liquid jet emanating from a nozzle into an ambient gas is inherently unstable. It may break up into drops of diameters comparable to the jet diameter or into droplets of diameters several orders of magnitude smaller. The sizes of the drops formed from a liquid jet without external control are in general not uniform. The sizes as well as the size distribution depend on the range of flow parameters in which the jet is produced. The jet breakup exhibits different characteristics in different regimes of the relevant flow parameters because of the different physical mechanisms involved. Some recent works based on linear stability theories aimed at the delineation of the different regimes and elucidation of the associated physical mechanisms are reviewed, with the intention of presenting current scientific knowledge on the subject. The unresolved scientific issues are pointed out.

752 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews some of the recent developments in upstream difference schemes through a unified representation, in order to enable comparison between the various schemes.
Abstract: This paper reviews some of the recent developments in upstream difference schemes through a unified representation, in order to enable comparison between the various schemes. Special attention is given to the Godunov-type schemes that result from using an approximate solution of the Riemann problem. For schemes based on flux splitting, the approximate Riemann solution can be interpreted as a solution of the collisionless Boltzmann equation.

3,133 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the sources of polycyclic aromatic hydrocarbons (PAHs) in the environment is presented, where various approaches including diagnostic ratio (DR) and principal component analysis (PCA) are discussed in detail.

2,093 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the formation of droplet clouds or sprays that subsequently burn in combustion chambers, which is caused by interfacial instabilities, such as the Kelvin-Helmholtz instability.
Abstract: The numerical simulation of flows with interfaces and free-surface flows is a vast topic, with applications to domains as varied as environment, geophysics, engineering, and fundamental physics. In engineering, as well as in other disciplines, the study of liquid-gas interfaces is important in combustion problems with liquid and gas reagents. The formation of droplet clouds or sprays that subsequently burn in combustion chambers originates in interfacial instabilities, such as the Kelvin-Helmholtz instability. What can numerical simulations do to improve our understanding of these phenomena? The limitations of numerical techniques make it impossible to consider more than a few droplets or bubbles. They also force us to stay at low Reynolds or Weber numbers, which prevent us from finding a direct solution to the breakup problem. However, these methods are potentially important. First, the continuous improvement of computational power (or, what amounts to the same, the drop in megaflop price) continuously extends the range of affordable problems. Second, and more importantly, the phenomena we consider often happen on scales of space and time where experimental visualization is difficult or impossible. In such cases, numerical simulation may be a useful prod to the intuition of the physicist, the engineer, or the mathematician. A typical example of interfacial flow is the collision between two liquid droplets. Finding the flow involves the study not only of hydrodynamic fields in the air and water phases but also of the air-water interface. This latter part

1,949 citations

Journal ArticleDOI
TL;DR: In this article, the authors collected and analyzed the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels, focusing on the most concerning emissions: nitric oxides and particulate matter.

1,768 citations

Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations