scispace - formally typeset
Search or ask a question

Showing papers by "Rolf Fagerberg published in 2015"


Journal ArticleDOI
TL;DR: This work presents a deterministic local routing algorithm that is guaranteed to find a path between any pair of vertices in a half-theta-6-graph (the half-$\theta_6$-graph is equivalent to the Delaunay triangulation where the empty region is an equilateral triangle).
Abstract: We present a deterministic local routing algorithm that is guaranteed to find a path between any pair of vertices in a half-$\theta_6$-graph (the half-$\theta_6$-graph is equivalent to the Delaunay triangulation where the empty region is an equilateral triangle). The length of the path is at most $5/\sqrt{3} \approx 2.887$ times the Euclidean distance between the pair of vertices. Moreover, we show that no local routing algorithm can achieve a better routing ratio, thereby proving that our routing algorithm is optimal. This is somewhat surprising because the spanning ratio of the half-$\theta_6$-graph is 2, meaning that even though there always exists a path whose length is at most twice the Euclidean distance, we cannot always find such a path when routing locally. Since every triangulation can be embedded in the plane as a half-$\theta_6$-graph using $O(\log n)$ bits per vertex coordinate via Schnyder's embedding scheme [W. Schnyder, Embedding planar graphs on the grid, in Proceedings of the 1st Annual ...

31 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that the spanning ratio of the Yao-Yao graph is at most 1/(1-2-sin(3\theta/8)) for odd k > 0.
Abstract: For a set of points in the plane and a fixed integer $k > 0$, the Yao graph $Y_k$ partitions the space around each point into $k$ equiangular cones of angle $\theta=2\pi/k$, and connects each point to a nearest neighbor in each cone. It is known for all Yao graphs, with the sole exception of $Y_5$, whether or not they are geometric spanners. In this paper we close this gap by showing that for odd $k \geq 5$, the spanning ratio of $Y_k$ is at most $1/(1-2\sin(3\theta/8))$, which gives the first constant upper bound for $Y_5$, and is an improvement over the previous bound of $1/(1-2\sin(\theta/2))$ for odd $k \geq 7$. We further reduce the upper bound on the spanning ratio for $Y_5$ from $10.9$ to \mbox{$2+\sqrt{3} \approx 3.74$}, which falls slightly below the lower bound of $3.79$ established for the spanning ratio of $\Theta_5$ ($\Theta$-graphs differ from Yao graphs only in the way they select the closest neighbor in each cone). This is the first such separation between a Yao and $\Theta$-graph with the same number of cones. We also give a lower bound of $2.87$ on the spanning ratio of $Y_5$. In addition, we revisit the $Y_6$ graph, which plays a particularly important role as the transition between the graphs ($k > 6$) for which simple inductive proofs are known, and the graphs ($k \le 6$) whose best spanning ratios have been established by complex arguments. Here we reduce the known spanning ratio of $Y_6$ from $17.6$ to $5.8$, getting closer to the spanning ratio of 2 established for $\Theta_6$. Finally, we present the first lower bounds on the spanning ratio of Yao graphs with more than six cones, and a construction that shows that the Yao-Yao graph (a bounded-degree variant of the Yao graph) with five cones is not a spanner.

9 citations


Book ChapterDOI
09 Dec 2015
TL;DR: In this paper, the authors show that no deterministic 1-local routing algorithm is O(sqrt{n})-competitive on all pairs of vertices of the constrained (theta 6)-graph.
Abstract: Let P be a set of n vertices in the plane and S a set of non-crossing line segments between vertices in P, called constraints. Two vertices are visible if the straight line segment connecting them does not properly intersect any constraints. The constrained \(\theta _m\)-graph is constructed by partitioning the plane around each vertex into m disjoint cones with aperture \(\theta = 2\uppi /m\), and adding an edge to the ‘closest’ visible vertex in each cone. We consider how to route on the constrained \(\theta _6\)-graph. We first show that no deterministic 1-local routing algorithm is \(o(\sqrt{n})\)-competitive on all pairs of vertices of the constrained \(\theta _6\)-graph. After that, we show how to route between any two visible vertices using only 1-local information, while guaranteeing that the returned path has length at most 2 times the Euclidean distance between the source and destination. To the best of our knowledge, this is the first local routing algorithm in the constrained setting with guarantees on the path length.

9 citations