scispace - formally typeset
Search or ask a question
Author

Rolf Terlinden

Bio: Rolf Terlinden is an academic researcher from Grünenthal GmbH. The author has contributed to research in topics: Tapentadol & Cmax. The author has an hindex of 11, co-authored 14 publications receiving 702 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Tapentadol, a schedule-II controlled substance, is well-suited for pain conditions requiring a strong opioid component—and it has the benefit of greater gastrointestinal tolerability compared to classical strong opioids.
Abstract: Introduction: Many opioid analgesics share common structural elements; however, minor differences in structure can result in major differences in pharmacological activity, pharmacokinetic profile, and clinical efficacy and tolerability. Areas covered: This review compares and contrasts the chemistry, pharmacodynamics, pharmacokinetics, and CNS ‘functional activity' of tapentadol and tramadol, responsible for their individual clinical utilities. Expert opinion: The distinct properties of tapentadol and tramadol generate different CNS functional activities, making each drug the prototype of different classes of opioid/nonopioid analgesics. Tramadol's analgesia derives from relatively weak µ-opioid receptor (MOR) agonism, plus norepinephrine and serotonin reuptake inhibition, provided collectively by the enantiomers of the parent drug and a metabolite that is a stronger MOR agonist, but has lower CNS penetration. Tapentadol's MOR agonist activity is several-fold greater than tramadol's, with prominent norepi...

138 citations

Journal ArticleDOI
TL;DR: A very pronounced synergistic interaction between the two mechanisms of action of tapentadol is demonstrated, probably the first demonstration of a synergistic interactions between the occupied receptors for a single compound with two mechanism of action.
Abstract: The novel centrally acting analgesic tapentadol [(−)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride] combines two mechanisms of action, μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition (NRI), in a single molecule. Pharmacological antagonism studies have demonstrated that both mechanisms of action contribute to the analgesic effects of tapentadol. This study was designed to investigate the nature of the interaction of the two mechanisms. Dose-response curves were generated in rats for tapentadol alone or in combination with the opioid antagonist naloxone or the α2-adrenoceptor antagonist yohimbine. Two different pain models were used: 1) low-intensity tail-flick and 2) spinal nerve ligation. In each model, we obtained dose-effect relations to reveal the effect of tapentadol based on MOR agonism, NRI, and unblocked tapentadol. Receptor fractional occupation was determined from tapentadol's brain concentration and its dissociation constant for each binding site. Tapentadol produced dose-dependent analgesic effects in both pain models, and its dose-effect curves were shifted to the right by both antagonists, thereby providing data to distinguish between MOR agonism and NRI. Both isobolographic analysis of occupation-effect data and a theoretically equivalent methodology determining interactions from the effect scale demonstrated very pronounced synergistic interaction between the two mechanisms of action of tapentadol. This may explain why tapentadol is only 2- to 3-fold less potent than morphine across a variety of preclinical pain models despite its 50-fold lower affinity for the MOR. This is probably the first demonstration of a synergistic interaction between the occupied receptors for a single compound with two mechanisms of action.

119 citations

Journal ArticleDOI
TL;DR: It was found that a single oral dose of tapentadol was rapidly absorbed, then excreted into the urine, primarily in the form of conjugated metabolites, and was well tolerated.
Abstract: Tapentadol is a novel, centrally acting oral analgesic with a dual mode of action that has demonstrated efficacy in preclinical and clinical models of pain relief. The present study investigated and characterized the absorption, metabolism, and excretion of tapentadol in humans. Four healthy male subjects received a single 100-mg oral dose of 3-[14C]-labeled tapentadol HCl for evaluation of the pharmacokinetics of the drug and the excretion balance of radiocarbon. The concentration-time profiles of radiocarbon in whole blood and serum and radiocarbon excretion in the urine and feces, and the expired C02 were determined. The serum pharmacokinetics and excretion kinetics of tapentadol and its conjugates were assessed, as was its tolerability. Absorption was rapid (with a mean maximum serum concentration [Cmax], 2.45 μg-eq/m]; a time to Cmax, 1.25–1.5 h), and the drug was present primarily in the form of conjugated metabolites (conjugated:unconjugated metabolites = 24∶1). Excretion of radiocarbon was rapid and complete (>95% within 24 h; 99.9% within 5 days) and almost exclusively renal (99%∶69% conjugates; 27% other metabolites; 3% in unchanged form). No severe adverse events or clinically relevant changes in vital signs, laboratory measurements, electrocardiogram recording, or physical examination findings were reported. In our study group, it was found that a single oral dose of tapentadol was rapidly absorbed, then excreted into the urine, primarily in the form of conjugated metabolites, and was well tolerated.

103 citations

Journal ArticleDOI
TL;DR: The new analgesic tapentadol was evaluated for induction and inhibition of several cytochrome P450 enzymes in vitro, and protein binding was assessed.
Abstract: The new analgesic tapentadol was evaluated for induction and inhibition of several cytochrome P450 enzymes in vitro, and protein binding was assessed. It was concluded that no clinically relevant drug-drug interactions are likely to occur through either mechanism.

83 citations

Journal ArticleDOI
TL;DR: It is highly unlikely that tapentadol forms metabolites that contribute in any relevant degree to its analgesic activity, as most of these metabolites had no analgesic effects in the tail-flick test in mice.
Abstract: Tapentadol is a novel, centrally acting analgesic combining micro-opioid receptor (MOR) agonism and noradrenaline (NA) reuptake inhibition in a single molecule. Many classic opioids form active metabolites that contribute to analgesia and/or side effects, and the involved cytochrome P450 enzyme complex can give rise to pharmacokinetic drug-drug interactions and variability in drug efficacy due to enzyme polymorphisms. Here we report on the relevance of tapentadol metabolites. Nine metabolites, including the major metabolite tapentadol-O-glucuronide, had no analgesic effects in the tail-flick test in mice. In the phenylquinone writhing test in mice, only 5 of these metabolites showed analgesic effects. The absence or presence of analgesia correlated with moderate activity (0.5 microM 45). Thus, it is highly unlikely that tapentadol forms metabolites that contribute in any relevant degree to its analgesic activity.

75 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Tramadol is an effective and well tolerated agent to reduce pain resulting from trauma, renal or biliary colic and labour, and also for the management of chronic pain of malignant or nonmalignant origin, particularly neuropathic pain.
Abstract: Tramadol, a centrally acting analgesic structurally related to codeine and morphine, consists of two enantiomers, both of which contribute to analgesic activity via different mechanisms. (+)-Tramadol and the metabolite (+)-O-desmethyl-tramadol (M1) are agonists of the μ. opioid receptor. (+)-Tramadol inhibits serotonin reuptake and (−)-tramadol inhibits norepinephrine reuptake, enhancing inhibitory effects on pain transmission in the spinal cord. The complementary and synergistic actions of the two enantiomers improve the analgesic efficacy and tolerability profile of the racemate. Tramadol is available as drops, capsules and sustained-release formulations for oral use, suppositories for rectal use and solution for intramuscular, intravenous and subcutaneous injection. After oral administration, tramadol is rapidly and almost completely absorbed. Sustained-release tablets release the active ingredient over a period of 12 hours, reach peak concentrations after 4.9 hours and have a bioavailability of 87–95% compared with capsules. Tramadol is rapidly distributed in the body; plasma protein binding is about 20%. Tramadol is mainly metabolised by O- and N-demethylation and by conjugation reactions forming glucuronides and sulfates. Tramadol and its metabolites are mainly excreted via the kidneys. The mean elimination half-life is about 6 hours. The O-demethylation of tramadol to M1, the main analgesic effective metabolite, is catalysed by cytochrome P450 (CYP) 2D6, whereas N-demethylation to M2 is catalysed by CYP2B6 and CYP3A4. The wide variability in the pharmacokinetic properties of tramadol can partly be ascribed to CYP polymorphism. O-and N-demethylation of tramadol as well as renal elimination are stereoselective. Pharmacokinetic-pharmacodynamic characterisation of tramadol is difficult because of differences between tramadol concentrations in plasma and at the site of action, and because of pharmacodynamic interactions between the two enantiomers of tramadol and its active metabolites. The analgesic potency of tramadol is about 10% of that of morphine following parenteral administration. Tramadol provides postoperative pain relief comparable with that of pethidine, and the analgesic efficacy of tramadol can further be improved by combination with a non-opioid analgesic. Tramadol may prove particularly useful in patients with a risk of poor cardiopulmonary function, after surgery of the thorax or upper abdomen and when non-opioid analgesics are contraindicated. Tramadol is an effective and well tolerated agent to reduce pain resulting from trauma, renal or biliary colic and labour, and also for the management of chronic pain of malignant or nonmalignant origin, particularly neuropathic pain. Tramadol appears to produce less constipation and dependence than equianalgesic doses of strong opioids.

1,048 citations

Journal ArticleDOI
TL;DR: The understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly, and intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights.
Abstract: The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.

697 citations

Journal ArticleDOI
TL;DR: Preclinical studies coupled with clinical pharmacologic and neuroimaging investigations have advanced the understanding of brain circuits that modulate pain and suggest that diminished descending inhibition is likely to be an important element in determining whether pain may become chronic.
Abstract: Purpose of review Chronic pain is an important public health problem that negatively impacts quality of life of affected individuals and exacts an enormous socio-economic cost. Currently available therapeutics provide inadequate management of pain in many patients. Acute pain states generally resolve in most patients. However, for reasons that are poorly understood, in some individuals, acute pain can transform to a chronic state. Our understanding of the risk factors that underlie the development of chronic pain is limited. Recent studies have suggested an important contribution of dysfunction in descending pain modulatory circuits to pain 'chronification'. Human studies provide insights into possible endogenous and exogenous factors that may promote the conversion of pain into a chronic condition. Recent findings Descending pain modulatory systems have been studied and characterized in animal models. Human brain imaging techniques, deep brain stimulation and the mechanisms of action of drugs that are effective in the treatment of pain confirm the clinical relevance of top-down pain modulatory circuits. Growing evidence supports the concept that chronic pain is associated with a dysregulation in descending pain modulation. Disruption of the balance of descending modulatory circuits to favour facilitation may promote and maintain chronic pain. Recent findings suggest that diminished descending inhibition is likely to be an important element in determining whether pain may become chronic. This view is consistent with the clinical success of drugs that enhance spinal noradrenergic activity, such as serotonin/norepinephrine reuptake inhibitors (SNRIs), in the treatment of chronic pain states. Consistent with this concept, a robust descending inhibitory system may be normally engaged to protect against the development of chronic pain. Imaging studies show that higher cortical and subcortical centres that govern emotional, motivational and cognitive processes communicate directly with descending pain modulatory circuits providing a mechanistic basis to explain how exogenous factors can influence the expression of chronic pain in a susceptible individual. Summary Preclinical studies coupled with clinical pharmacologic and neuroimaging investigations have advanced our understanding of brain circuits that modulate pain. Descending pain facilitatory and inhibitory circuits arising ultimately in the brainstem provide mechanisms that can be engaged to promote or protect against pain 'chronification'. These systems interact with higher centres, thus providing a means through which exogenous factors can influence the risk of pain chronification. A greater understanding of the role of descending pain modulation can lead to novel therapeutic directions aimed at normalizing aberrant processes that can lead to chronic pain.

487 citations

Journal ArticleDOI
TL;DR: Although glucuronidation is thought to be less affected in liver cirrhosis, the clearance of morphine was found to be decreased and oral bioavailability increased, and the disposition of a few opioids, such as fentanyl, sufent anil and remifentanil, appears to be unaffected in liver disease.
Abstract: The liver is the major site of biotransformation for most opioids. Thus, the disposition of these drugs may be affected in patients with liver insufficiency. The major metabolic pathway for most opioids is oxidation. The exceptions are morphine and buprenorphine, which primarily undergo glucuronidation, and remifentanil, which is cleared by ester hydrolysis. Oxidation of opioids is reduced in patients with hepatic cirrhosis, resulting in decreased drug clearance [for pethidine (meperidine), dextropropoxyphene, pentazocine, tramadol and alfentanil] and/or increased oral bioavailability caused by a reduced first-pass metabolism (for pethidine, dextropropoxyphene, pentazocine and dihydrocodeine). Although glucuronidation is thought to be less affected in liver cirrhosis, and clearance of morphine was found to be decreased and oral bioavailability increased. The consequence of reduced drug metabolism is the risk of accumulation in the body, especially with repeated administration. Lower doses or longer administration intervals should be used to remedy this risk. Special risks are known for pethidine, with the potential for the accumulation of norpethidine, a metabolite that can cause seizures, and for dextropropoxyphene, for which several cases of hepatotoxicity have been reported. On the other hand, the analgesic activity of codeine and tilidine depends on transformation into the active metabolites, morphine and nortilidine, respectively. If metabolism is decreased in patients with chronic liver disease, the analgesic action of these drugs may be compromised. Finally, the disposition of a few opioids, such as fentanyl, sufentanil and remifentanil, appears to be unaffected in liver disease.

257 citations

Journal ArticleDOI
TL;DR: Tapentadol ER effectively relieved moderate to severe chronic low back pain over 15 weeks and had better gastrointestinal tolerability than oxycodone HCl CR and had a lower incidence of treatment-emergent AEs than oxy codone CR.
Abstract: Objective To evaluate the efficacy and safety of tapentadol extended release (ER) for the management of moderate to severe chronic low back pain. Research design Patients (N = 981) were randomized 1:1:1 to receive tapentadol ER 100 - 250 mg b.i.d., oxycodone HCl controlled release (CR) 20 - 50 mg b.i.d., or placebo over 15 weeks (3-week titration period, 12-week maintenance period). Main outcome measures Efficacy was assessed as change from baseline in average pain intensity (11-point NRS) at week 12 of the maintenance period and throughout the maintenance period; last observation carried forward was used to impute missing pain scores. Adverse events (AEs) were monitored throughout the study. Results Tapentadol ER significantly reduced average pain intensity versus placebo at week 12 (least squares mean difference vs placebo [95% confidence interval], -0.8 [-1.22, -0.47]; p Conclusions Tapentadol ER (100 - 250 mg b.i.d.) effectively relieved moderate to severe chronic low back pain over 15 weeks and had better gastrointestinal tolerability than oxycodone HCl CR (20 - 50 mg b.i.d.).

249 citations