scispace - formally typeset
Search or ask a question
Author

Rolf W. Hartmann

Bio: Rolf W. Hartmann is an academic researcher from Saarland University. The author has contributed to research in topics: Aromatase & Aldosterone synthase. The author has an hindex of 47, co-authored 365 publications receiving 7834 citations. Previous affiliations of Rolf W. Hartmann include University of Regensburg & Free University of Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: It can be expected that combination therapies, also containing antivirulence agents, will pave the way toward novel treatment options against P. aeruginosa, and antivirulent drugs are expected to yield a significantly reduced rate of resistance development.
Abstract: Infections with Pseudomonas aeruginosa have become a concerning threat in hospital-acquired infections and for cystic fibrosis patients. The major problem leading to high mortality lies in the appearance of drug-resistant strains. Therefore, a vast number of approaches to develop novel anti-infectives is currently pursued. These diverse strategies span from killing (new antibiotics) to disarming (antivirulence) the pathogen. Particular emphasis lies on the development of compounds that inhibit biofilms formed in chronic infections to restore susceptibility toward antibiotics. Numerous promising results are summarized in this perspective. Antibiotics with a novel mode of action will be needed to avoid cross resistance against currently used therapeutic agents. Importantly, antivirulence drugs are expected to yield a significantly reduced rate of resistance development. Most developments are still far from the application. It can however be expected that combination therapies, also containing antivirulence ...

194 citations

Journal ArticleDOI
TL;DR: An overview of functional and structural aspects for the different 17β-HSDs is given and the selective inhibition of the concerned enzymes might provide an effective treatment and a good alternative to the existing endocrine therapies.

183 citations

Journal ArticleDOI
TL;DR: In this context, various pharmaceutical lipids were used to prepare ultra-small solid lipid nanoparticles (us-SLNs) by hot melt homogenization, which exhibited anti-virulence properties themselves, which was shown to be related to anti- virulence effects of the emulsifiers used.

152 citations

Journal ArticleDOI
TL;DR: In vitro evaluation using a reporter gene assay in Escherichia coli led to the discovery of the first competitive PqsR antagonists, which are highly potent (K(d,app) of compound 20: 7 nM).

116 citations

Journal ArticleDOI
TL;DR: Being stronger and more selective inhibitors of the estrogen biosynthesis than AG, some of the newly developed derivatives of AG might be better candidates for the treatment of the hormone-dependent human breast cancer.
Abstract: The synthesis and biological evaluation of 3-alkyl-substituted 3-(4-aminophenyl)piperidine-2,6-diones as inhibitors of estrogen biosynthesis are described [H (1), methyl (2), ethyl (3), n-propyl (4), isopropyl (5), n-butyl (6), isobutyl (7), sec-butyl (8), n-pentyl (9), isopentyl (10), 2-methylbutyl (11), sec-pentyl (12), n-hexyl (13), n-heptyl (14)]. In vitro compounds 4-14 showed a stronger inhibition of human placental aromatase compared to aminoglutethimide (AG, compound 3), which recently has become used for the treatment of hormone-dependent breast cancer. The most active derivative, compound 10, showed a 93-fold stronger inhibition than AG. With the exception of 5, 7, and 8, all other compounds exhibited similar or decreased inhibition of bovine adrenal desmolase compared to AG. Compounds 4 and 6-12 showed a stronger inhibition of the plasma estradiol concentration of pregnant mare serum gonadotropin (PMSG) primed Sprague-Dawley (SD) rats compared to the parent compound. Compounds 4, 6-8, 10, and 12 inhibited the testosterone-stimulated tumor growth of ovariectomized 9,10-dimethyl-1,2-benzanthracene (DMBA) tumor-bearing SD rats more strongly than AG. Being stronger and more selective inhibitors of the estrogen biosynthesis than AG, some of the newly developed derivatives of AG might be better candidates for the treatment of the hormone-dependent human breast cancer.

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach called click chemistry is defined, enabled, and constrained by a handful of nearly perfect "springloaded" reactions.
Abstract: Examination of nature's favorite molecules reveals a striking preference for making carbon-heteroatom bonds over carbon-carbon bonds-surely no surprise given that carbon dioxide is nature's starting material and that most reactions are performed in water. Nucleic acids, proteins, and polysaccharides are condensation polymers of small subunits stitched together by carbon-heteroatom bonds. Even the 35 or so building blocks from which these crucial molecules are made each contain, at most, six contiguous C-C bonds, except for the three aromatic amino acids. Taking our cue from nature's approach, we address here the development of a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach we call "click chemistry". Click chemistry is at once defined, enabled, and constrained by a handful of nearly perfect "spring-loaded" reactions. The stringent criteria for a process to earn click chemistry status are described along with examples of the molecular frameworks that are easily made using this spartan, but powerful, synthetic strategy.

9,069 citations

Journal ArticleDOI
TL;DR: The effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography are provided, as well as new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds.
Abstract: The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, 18F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in po...

2,149 citations

Journal ArticleDOI
TL;DR: Recently, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs as mentioned in this paper.
Abstract: The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclea...

1,682 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations