scispace - formally typeset
Search or ask a question
Author

Roman Jackiw

Other affiliations: Harvard University, CERN
Bio: Roman Jackiw is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Gauge theory & Quantum field theory. The author has an hindex of 76, co-authored 235 publications receiving 31639 citations. Previous affiliations of Roman Jackiw include Harvard University & CERN.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a modification of the Pauli-Villars-Gupta regularization was proposed which respects both PCAC and gauge invariance for π0→γγ.
Abstract: The effective coupling constant for π0→γγ should vanish for zero pion mass in theories with PCAC and gauge invariance. It does not so vanish in an explicit perturbation calculation in the σ-model. The resolution of the puzzle is effected by a modification of Pauli-Villars-Gupta regularization which respects both PCAC and gauge invariance.

2,249 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed three-dimensional Yang-Mills and gravity theories augmented by gauge-invariant mass terms and quantized a dimensionless mass-couplingconstant ratio.
Abstract: Three-dimensional Yang-Mills and gravity theories augmented by gauge-invariant mass terms are analyzed. These topologically nontrivial additions profoundly alter the particle content of the models and lead to quantization of a dimensionless mass-coupling-constant ratio. The vector field excitations become massive, with spin 1 (rather than massless with spin 0), and the mass provides an infrared cutoff. The gravitation acquires mass, mediates finite-range interactions, and has spin 2 (rather than being absent altogether); although its mass term is of third derivative order, there are no ghosts or acausalities.

1,693 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the existence of a non-degenerate, isolated, zero-energy, $c$-number solution of the Dirac equation implies that the soliton is a degenerate doublet with Fermi number.
Abstract: We study the structure of soliton-monopole systems when Fermi fields are present. We show that the existence of a nondegenerate, isolated, zero-energy, $c$-number solution of the Dirac equation implies that the soliton is a degenerate doublet with Fermi number \ifmmode\pm\else\textpm\fi{} \textonehalf{}. We find such solutions in the theory of Yang-Mills monopoles and dyons.

1,621 citations

Journal ArticleDOI
TL;DR: In this article, a functional-diagrammatic evaluation of the effective potential and the effective mass of a graph is performed to determine whether the symmetry is restored above a critical temperature, and an approximate gap equation is derived to describe the theory near the critical point.
Abstract: Spontaneous symmetry breaking at finite temperature is studied. We show that for the class of theories discussed, symmetry is restored above a critical temperature ${{\ensuremath{\beta}}_{c}}^{\ensuremath{-}1}$. We determine ${\ensuremath{\beta}}_{c}$ by a functional-diagrammatic evaluation of the effective potential and the effective mass. A formula for ${\ensuremath{\beta}}_{c}$ is obtained in terms of the renormalized parameters of the theory. By examining a large subset of graphs, we show that the formula is accurate for weak coupling. An approximate gap equation is derived whose solutions describe the theory near the critical point. For gauge theories, special attention is given to ensure gauge invariance of physical quantities. When symmetry is violated dynamically, it is argued that no critical point exists.

1,418 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the effects of topological properties on the masses of the gauge fields in three-dimensional space-time, where novel, gauge invariant, P and T odd terms of topology origin give rise to masses for the gauge field.

1,307 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor, and they take as the only fundamental short distance scale in nature.

6,013 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that 2+1 dimensional quantum Yang-Mills theory with an action consisting purely of the Chern-Simons term is exactly soluble and gave a natural framework for understanding the Jones polynomial of knot theory in three dimensional terms.
Abstract: It is shown that 2+1 dimensional quantum Yang-Mills theory, with an action consisting purely of the Chern-Simons term, is exactly soluble and gives a natural framework for understanding the Jones polynomial of knot theory in three dimensional terms. In this version, the Jones polynomial can be generalized fromS 3 to arbitrary three manifolds, giving invariants of three manifolds that are computable from a surgery presentation. These results shed a surprising new light on conformal field theory in 1+1 dimensions.

5,093 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ''ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Abstract: Topological quantum computation has emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations that are necessary for quantum computation are carried out by braiding quasiparticles and then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the $\ensuremath{ u}=5∕2$ state, although several other prospective candidates have been proposed in systems as disparate as ultracold atoms in optical lattices and thin-film superconductors. In this review article, current research in this field is described, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. Both the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the $\ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.

4,457 citations