scispace - formally typeset
Search or ask a question
Author

Roman V. Gorbachev

Bio: Roman V. Gorbachev is an academic researcher from University of Manchester. The author has contributed to research in topics: Graphene & Bilayer graphene. The author has an hindex of 55, co-authored 150 publications receiving 24340 citations. Previous affiliations of Roman V. Gorbachev include University of Exeter & Henry Royce Institute.


Papers
More filters
Journal ArticleDOI
24 Feb 2012-Science
TL;DR: A bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness is reported, which has potential for high-frequency operation and large-scale integration.
Abstract: An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively Such devices have potential for high-frequency operation and large-scale integration

2,401 citations

Journal ArticleDOI
14 Jun 2013-Science
TL;DR: Transition metal dichalcogenides sandwiched between two layers of graphene produce an enhanced photoresponse, which allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).
Abstract: The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).

2,209 citations

Journal ArticleDOI
TL;DR: A new generation of field-effect vertical tunnelling transistors where two-dimensional tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or chemical vapour deposition-grown graphene are described.
Abstract: The celebrated electronic properties of graphene(1,2) have opened the way for materials just one atom thick(3) to be used in the post-silicon electronic era(4). An important milestone was the creation of heterostructures based on graphene and other two-dimensional crystals, which can be assembled into three-dimensional stacks with atomic layer precision(5-7). Such layered structures have already demonstrated a range of fascinating physical phenomena(8-71), and have also been used in demonstrating a prototype field-effect tunnelling transistor(12), which is regarded to be a candidate for post-CMOS (complementary metal-oxide semiconductor) technology. The range of possible materials that could be incorporated into such stacks is very large. Indeed, there are many other materials with layers linked by weak van der Waals forces that can be exfoliated(3,13) and combined together to create novel highly tailored heterostructures. Here, we describe a new generation of field-effect vertical tunnelling transistors where two-dimensional tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or chemical vapour deposition-grown graphene. The combination of tunnelling (under the barrier) and thermionic (over the barrier) transport allows for unprecedented current modulation exceeding 1 x 10(6) at room temperature and very high ON current. These devices can also operate on transparent and flexible substrates.

1,617 citations

Journal ArticleDOI
TL;DR: The encapsulation makes graphene practically insusceptible to the ambient atmosphere and, simultaneously, allows the use of boron nitride as an ultrathin top gate dielectric.
Abstract: Devices made from graphene encapsulated in hexagonal boron-nitride exhibit pronounced negative bend resistance and an anomalous Hall effect, which are a direct consequence of room-temperature ballistic transport at a micrometer scale for a wide range of carrier concentrations. The encapsulation makes graphene practically insusceptible to the ambient atmosphere and, simultaneously, allows the use of boron nitride as an ultrathin top gate dielectric.

1,568 citations

Journal ArticleDOI
30 May 2013-Nature
TL;DR: Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures.
Abstract: Placing graphene on a boron nitride substrate and accurately aligning their crystallographic axes, to form a moire superlattice, leads to profound changes in the graphene’s electronic spectrum. In 1976 Douglas Hofstadter predicted that electrons in a lattice subjected to electrostatic and magnetic fields would show a characteristic energy spectrum determined by the interplay between two quantizing fields. The expected spectrum would feature a repeating butterfly-shaped motif, known as Hofstadter's butterfly. The experimental realization of the phenomenon has proved difficult because of the problem of producing a sufficiently disorder-free superlattice where the length scales for magnetic and electric field can truly compete with each other. Now that goal has been achieved — twice. Two groups working independently produced superlattices by placing ultraclean graphene (Ponomarenko et al.) or bilayer graphene (Kim et al.) on a hexagonal boron nitride substrate and crystallographically aligning the films at a precise angle to produce moire pattern superstructures. Electronic transport measurements on the moire superlattices provide clear evidence for Hofstadter's spectrum. The demonstrated experimental access to a fractal spectrum offers opportunities for the study of complex chaotic effects in a tunable quantum system. Superlattices have attracted great interest because their use may make it possible to modify the spectra of two-dimensional electron systems and, ultimately, create materials with tailored electronic properties1,2,3,4,5,6,7,8. In previous studies (see, for example, refs 1, 2, 3, 4, 5, 6, 7, 8), it proved difficult to realize superlattices with short periodicities and weak disorder, and most of their observed features could be explained in terms of cyclotron orbits commensurate with the superlattice1,2,3,4. Evidence for the formation of superlattice minibands (forming a fractal spectrum known as Hofstadter’s butterfly9) has been limited to the observation of new low-field oscillations5 and an internal structure within Landau levels6,7,8. Here we report transport properties of graphene placed on a boron nitride substrate and accurately aligned along its crystallographic directions. The substrate’s moire potential10,11,12 acts as a superlattice and leads to profound changes in the graphene’s electronic spectrum. Second-generation Dirac points13,14,15,16,17,18,19,20,21,22 appear as pronounced peaks in resistivity, accompanied by reversal of the Hall effect. The latter indicates that the effective sign of the charge carriers changes within graphene’s conduction and valence bands. Strong magnetic fields lead to Zak-type cloning23 of the third generation of Dirac points, which are observed as numerous neutrality points in fields where a unit fraction of the flux quantum pierces the superlattice unit cell. Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems7,8,9,22,23,24 and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures25.

1,135 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations