scispace - formally typeset
Search or ask a question
Author

Roman V. Pisarev

Bio: Roman V. Pisarev is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Antiferromagnetism & Magnetization. The author has an hindex of 41, co-authored 215 publications receiving 7828 citations. Previous affiliations of Roman V. Pisarev include Ioffe Institute & Ural State University.


Papers
More filters
Journal ArticleDOI
24 Oct 2002-Nature
TL;DR: Spatial maps of coupled antiferromagnetic and ferroelectric domains in YMnO3 are obtained by imaging with optical second harmonic generation and lead to a configuration that is dominated by the ferroelectromagnetic product of the order parameters.
Abstract: Ferroelectromagnets are an interesting group of compounds that complement purely (anti-)ferroelectric or (anti-)ferromagnetic materials--they display simultaneous electric and magnetic order. With this coexistence they supplement materials in which magnetization can be induced by an electric field and electrical polarization by a magnetic field, a property which is termed the magnetoelectric effect. Aside from its fundamental importance, the mutual control of electric and magnetic properties is of significant interest for applications in magnetic storage media and 'spintronics'. The coupled electric and magnetic ordering in ferroelectromagnets is accompanied by the formation of domains and domain walls. However, such a cross-correlation between magnetic and electric domains has so far not been observed. Here we report spatial maps of coupled antiferromagnetic and ferroelectric domains in YMnO3, obtained by imaging with optical second harmonic generation. The coupling originates from an interaction between magnetic and electric domain walls, which leads to a configuration that is dominated by the ferroelectromagnetic product of the order parameters.

1,350 citations

Journal ArticleDOI
02 Jun 2005-Nature
TL;DR: It is demonstrated that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect, and offers prospects for applications of ultrafast lasers in magnetic devices.
Abstract: The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields. Recent experiments on laser-induced demagnetization and spin reorientation use ultrafast lasers as a means to manipulate magnetization, accessing timescales of a picosecond or less. However, in all these cases the observed magnetic excitation is the result of optical absorption followed by a rapid temperature increase. This thermal origin of spin excitation considerably limits potential applications because the repetition frequency is limited by the cooling time. Here we demonstrate that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect. Such a photomagnetic interaction is instantaneous and is limited in time by the pulse width (approximately 200 fs in our experiment). Our finding thus reveals an alternative mechanism of ultrafast coherent spin control, and offers prospects for applications of ultrafast lasers in magnetic devices.

963 citations

Journal ArticleDOI
24 Jun 2004-Nature
TL;DR: It is shown that, using a short laser pulse, the spins of the antiferromagnet TmFeO3 can indeed be manipulated on a timescale of a few picoseconds, in contrast to the hundreds of picoseConds in a ferromagnets.
Abstract: All magnetically ordered materials can be divided into two primary classes: ferromagnets and antiferromagnets. Since ancient times, ferromagnetic materials have found vast application areas, from the compass to computer storage and more recently to magnetic random access memory and spintronics. In contrast, antiferromagnetic (AFM) materials, though representing the overwhelming majority of magnetically ordered materials, for a long time were of academic interest only. The fundamental difference between the two types of magnetic materials manifests itself in their reaction to an external magnetic field-in an antiferromagnet, the exchange interaction leads to zero net magnetization. The related absence of a net angular momentum should result in orders of magnitude faster AFM spin dynamics. Here we show that, using a short laser pulse, the spins of the antiferromagnet TmFeO3 can indeed be manipulated on a timescale of a few picoseconds, in contrast to the hundreds of picoseconds in a ferromagnet. Because the ultrafast dynamics of spins in antiferromagnets is a key issue for exchange-biased devices, this finding can expand the now limited set of applications for AFM materials.

530 citations

Journal ArticleDOI
TL;DR: Second-harmonic generation (SHG) in magnetically ordered crystals is reviewed in this article, where the specific degrees of optical experiments -including spectral, spatial, and temporal resolution - lead to the observation of novel physical effects that cannot be revealed by other techniques of probing magnetism.
Abstract: Second-harmonic generation (SHG) in magnetically ordered crystals is reviewed. The symmetry of such crystals is determined by the arrangement of both the charges and the spins, so their contributions to the crystallographic and the magnetic structures, respectively, must be distinguished. Magnetic SHG is introduced as a probe for magnetic structures and sublattice interactions. The specific degrees of optical experiments - including spectral, spatial, and temporal resolution - lead to the observation of novel physical effects that cannot be revealed by other techniques of probing magnetism. These include local or hidden phase transitions, interacting magnetized and polarized sublattices and domain walls, and magnetic interfaces. SHG in various centrosymmetric and noncentrosymmetric crystal classes of antiferromagnetic oxides such as Cr2O3, hexagonal RMnO3(R=Sc,Y,In,Ho-Lu), magnetic garnet films, CuB2O4, CoO, and NiO, is discussed.

356 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate an inertia-based spin switching mechanism in antiferromagnets, where the exchange interaction between the spins leads to an inertial behavior, such that only a short "kick" is required to transfer sufficient momentum to the spin system for it to reorient.
Abstract: Magnetic switching is typically accomplished by using a driving field that stays on until the magnetization is rotated to its final position. An experiment demonstrates that, in antiferromagnets, inertial effects can be harnessed, such that only a short ‘kick’ is required to transfer sufficient momentum to the spin system for it to reorient. It is generally accepted that the fastest way to reorient magnetization is through precessional motion in an external magnetic field1,2,3,4,5,6,7. In ferromagnets, the application of a magnetic field instantaneously sets spins in motion and, in contrast to the inertial motion of massive bodies, the magnetization can climb over a potential barrier only during the action of a magnetic-field pulse. Here we demonstrate a fundamentally different scenario of spin switching in antiferromagnets, where the exchange interaction between the spins leads to an inertial behaviour. Although the spin orientation hardly changes during the action of an optically generated strong magnetic-field pulse of 100 fs duration, this pulse transfers sufficient momentum to the spin system to overcome the potential barrier and reorient into a new metastable state, long after the action of the stimulus. Such an inertia-based mechanism of spin switching should offer new opportunities for ultrafast recording and processing of magnetically stored information.

285 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
17 Aug 2006-Nature
TL;DR: A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements that arises through the quantum mechanical phenomenon of exchange.
Abstract: A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements. A ferromagnetic crystal exhibits a stable and switchable magnetization that arises through the quantum mechanical phenomenon of exchange. There are very few 'multiferroic' materials that exhibit both of these properties, but the 'magnetoelectric' coupling of magnetic and electrical properties is a more general and widespread phenomenon. Although work in this area can be traced back to pioneering research in the 1950s and 1960s, there has been a recent resurgence of interest driven by long-term technological aspirations.

6,813 citations

Journal ArticleDOI
14 Mar 2003-Science
TL;DR: Enhanced polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.
Abstract: Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure analysis indicates that the crystal structure of film is monoclinic in contrast to bulk, which is rhombohedral. The films display a room-temperature spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The observed enhancement is corroborated by first-principles calculations and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.

5,387 citations

Journal ArticleDOI
Abstract: Recent research activities on the linear magnetoelectric (ME) effect?induction of magnetization by an electric field or of polarization by a magnetic field?are reviewed. Beginning with a brief summary of the history of the ME effect since its prediction in 1894, the paper focuses on the present revival of the effect. Two major sources for 'large' ME effects are identified. (i) In composite materials the ME effect is generated as a product property of a magnetostrictive and a piezoelectric compound. A linear ME polarization is induced by a weak ac magnetic field oscillating in the presence of a strong dc bias field. The ME effect is large if the ME coefficient coupling the magnetic and electric fields is large. Experiments on sintered granular composites and on laminated layers of the constituents as well as theories on the interaction between the constituents are described. In the vicinity of electromechanical resonances a ME voltage coefficient of up to 90?V?cm?1?Oe?1 is achieved, which exceeds the ME response of single-phase compounds by 3?5 orders of magnitude. Microwave devices, sensors, transducers and heterogeneous read/write devices are among the suggested technical implementations of the composite ME effect. (ii) In multiferroics the internal magnetic and/or electric fields are enhanced by the presence of multiple long-range ordering. The ME effect is strong enough to trigger magnetic or electrical phase transitions. ME effects in multiferroics are thus 'large' if the corresponding contribution to the free energy is large. Clamped ME switching of electrical and magnetic domains, ferroelectric reorientation induced by applied magnetic fields and induction of ferromagnetic ordering in applied electric fields were observed. Mechanisms favouring multiferroicity are summarized, and multiferroics in reduced dimensions are discussed. In addition to composites and multiferroics, novel and exotic manifestations of ME behaviour are investigated. This includes (i) optical second harmonic generation as a tool to study magnetic, electrical and ME properties in one setup and with access to domain structures; (ii) ME effects in colossal magnetoresistive manganites, superconductors and phosphates of the LiMPO4 type; (iii) the concept of the toroidal moment as manifestation of a ME dipole moment; (iv) pronounced ME effects in photonic crystals with a possibility of electromagnetic unidirectionality. The review concludes with a summary and an outlook to the future development of magnetoelectrics research.

4,315 citations

Journal ArticleDOI
06 Nov 2003-Nature
TL;DR: The discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering and gigantic magnetoelectric and magnetocapacitance effects are found.
Abstract: The magnetoelectric effect--the induction of magnetization by means of an electric field and induction of polarization by means of a magnetic field--was first presumed to exist by Pierre Curie, and subsequently attracted a great deal of interest in the 1960s and 1970s (refs 2-4). More recently, related studies on magnetic ferroelectrics have signalled a revival of interest in this phenomenon. From a technological point of view, the mutual control of electric and magnetic properties is an attractive possibility, but the number of candidate materials is limited and the effects are typically too small to be useful in applications. Here we report the discovery of ferroelectricity in a perovskite manganite, TbMnO3, where the effect of spin frustration causes sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO3, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.

3,769 citations