scispace - formally typeset
Search or ask a question
Author

Romeo Iulian Olariu

Bio: Romeo Iulian Olariu is an academic researcher from Alexandru Ioan Cuza University. The author has contributed to research in topics: Chemistry & Radical. The author has an hindex of 19, co-authored 47 publications receiving 1696 citations. Previous affiliations of Romeo Iulian Olariu include École des Mines de Douai & University of Turin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed the data concerning the atmospheric occurrence of nitrophenols, both in the gas and in the condensed phase (rainwater, cloud, fog and snow).

337 citations

Journal ArticleDOI
TL;DR: Substantial DOM photolability was observed upon irradiation of nitrate-rich groundwater, mainly due to the elevated *OH generation rate, and evidence was also obtained of the photoformation of potentially toxic and/or mutagenic nitroaromatic compounds upon irradation of natural lake water and groundwater samples, proportionally to the nitrate levels.
Abstract: Hydroxyl radical formation rates, steady-state concentration, and overall scavenging rate constant were measured by irradiation of surface lake water samples from Piedmont (NW Italy) and nitrate-rich groundwater samples from Moldova (NE Romania). Dissolved organic matter (DOM) was the main source and sink of *OH upon lake water irradiation, with [*OH] being independent of DOM amount. Water oxidation by photoexcited DOM is a likely *OH source in the presence of very low levels of nitrate and dissolved iron. Under different circumstances it is not possible to exclude other processes, e.g., DOM-enhanced photo-Fenton reactions. Under the hypotheses of no interaction and absence of mutual screening of radiation, nitrate would prevail over DOM as *OH source for a NO3-/DOM ratio higher than 3.3 x 10(-5) (mol NO3-) (mg C)(-1), DOM prevailing for lower values. Substantial DOM photolability was observed upon irradiation of nitrate-rich groundwater, mainly due to the elevated *OH generation rate. For the first time to our knowledge, evidence was also obtained of the photoformation of potentially toxic and/or mutagenic nitroaromatic compounds upon irradiation of natural lake water and groundwater samples, proportionally to the nitrate levels.

309 citations

Journal ArticleDOI
TL;DR: This paper is a tutorial review in the field of atmospheric chemistry and describes some recent developments in tropospheric photochemistry in the aqueous phase and on particulate matter regarding the transformation processes that photochemical reactions induce on organic compounds.
Abstract: This paper is a tutorial review in the field of atmospheric chemistry. It describes some recent developments in tropospheric photochemistry in the aqueous phase and on particulate matter. The main focus is regarding the transformation processes that photochemical reactions induce on organic compounds. The relevant reactions can take place both on the surface of dispersed particles and within liquid droplets (e.g. cloud, fog, mist, dew). Direct and sensitised photolysis and the photogeneration of radical species are the main processes involved. Direct photolysis can be very important in the transformation of particle-adsorbed compounds. The significance of direct photolysis depends on the substrate under consideration and on the colour of the particle: dark carbonaceous material shields light, therefore protecting the adsorbed molecules from photodegradation, while a much lower protection is afforded for the light-shaded mineral fraction of particulate. Particulate matter is also rich in photosensitisers (e.g. quinones and aromatic carbonyls), partially derived from PAH photodegradation. These compounds can induce degradation of other molecules upon radiation absorption. Interestingly, substrates such as methoxyphenols, major constituents of wood-smoke aerosol, can also enhance the degradation of some sensitisers. Photosensitised processes in the tropospheric aqueous phase have been much less studied: it will be interesting to assess the photochemical properties of Humic-Like Substances (HULIS) that are major components of liquid droplets. The main photochemical sources of reactive radical species in aqueous solution and on particulate matter are hydrogen peroxide, nitrate, nitrite, and Fe(III) compounds and oxides. The photogeneration of hydroxyl radicals can be important in polluted areas, while their transfer from the gas phase and dark generation are usually prevailing on an average continental scale. The reactions involving hydroxyl radicals can induce very fast transformation of compounds reacting with •OH at a diffusion-controlled rate (1010 M−1 s−1), with time scales of an hour or less. The hydroxyl-induced reactivity in solution can be faster than in the gas phase, influencing the degradation kinetics of water-soluble compounds. Moreover, photochemical processes in fog and cloudwater can be important sources of secondary pollutants such as nitro-, nitroso-, and chloro-derivatives.

229 citations

Journal ArticleDOI
TL;DR: The ring-retaining products of the OH-initiated degradation of phenol and o -, m -, and p -cresol in the presence of NO x have been investigated and their formation yields determined as mentioned in this paper.

168 citations

Journal ArticleDOI
TL;DR: The higher availability of less-reactive species than the hydroxyl radical would contribute to substantially enhance the photodegradation of the phenols/phenolates that are sufficiently reactive toward the carbonate radical.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

3,324 citations

Journal ArticleDOI
TL;DR: In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3).
Abstract: . Kinetic and mechanistic data relevant to the tropospheric degradation of volatile organic compounds (VOC), and the production of secondary pollutants, have previously been used to define a protocol which underpinned the construction of a near-explicit Master Chemical Mechanism. In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3). The treatment of 18 aromatic VOC is described in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the reactions of the radical intermediates and the further degradation of first and subsequent generation products. Emphasis is placed on updating the previous information, and outlining the methodology which is specifically applicable to VOC not considered previously (e.g. a - and b -pinene). The present protocol aims to take into consideration work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Application of MCM v3 in appropriate box models indicates that the representation of isoprene degradation provides a good description of the speciated distribution of oxygenated organic products observed in reported field studies where isoprene was the dominant emitted hydrocarbon, and that the a -pinene degradation chemistry provides a good description of the time dependence of key gas phase species in a -pinene/NOX photo-oxidation experiments carried out in the European Photoreactor (EUPHORE). Photochemical Ozone Creation Potentials (POCP) have been calculated for the 106 non-aromatic non-methane VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. Where applicable, the values are compared with those calculated with previous versions of the MCM.

1,274 citations

Journal ArticleDOI
TL;DR: This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.
Abstract: Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.

1,169 citations