scispace - formally typeset
Search or ask a question
Author

Romeo Ortega

Other affiliations: Southeast University, CentraleSupélec, University of Paris-Sud  ...read more
Bio: Romeo Ortega is an academic researcher from Instituto Tecnológico Autónomo de México. The author has contributed to research in topics: Control theory & Adaptive control. The author has an hindex of 82, co-authored 778 publications receiving 30251 citations. Previous affiliations of Romeo Ortega include Southeast University & CentraleSupélec.


Papers
More filters
Journal ArticleDOI
TL;DR: A new PBC theory is developed which extends to a broader class of systems the aforementioned energy-balancing stabilization mechanism and the structure invariance and considers instead port-controlled Hamiltonian models, which result from the network modelling of energy-conserving lumped-parameter physical systems with independent storage elements, and strictly contain the class of EL models.

1,444 citations

Journal ArticleDOI
TL;DR: The intent is to lend some perspective to the growing list of adaptive control results for manipulators by providing a unified framework for comparison of those adaptive control algorithms which have been shown to be globally convergent.

1,212 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that standard PBC is stymied by the presence of unbounded energy dissipation, hence it is applicable only to systems that are stabilizable with passive controllers.
Abstract: Energy is one of the fundamental concepts in science and engineering practice, where it is common to view dynamical systems as energy-transformation devices. This perspective is particularly useful in studying complex nonlinear systems by decomposing them into simpler subsystems that, upon interconnection, add up their energies to determine the full system's behavior. The action of a controller may also be understood in energy terms as another dynamical system. The control problem can then be recast as finding a dynamical system and an interconnection pattern such that the overall energy function takes the desired form. This energy-shaping approach is the essence of passivity-based control (PBC), a controller design technique that is very well known in mechanical systems. Our objectives in the article are threefold. First, to call attention to the fact that PBC does not rely on some particular structural properties of mechanical systems, but hinges on the more fundamental (and universal) property of energy balancing. Second, to identify the physical obstacles that hamper the use of standard PBC in applications other than mechanical systems. In particular, we show that standard PBC is stymied by the presence of unbounded energy dissipation, hence it is applicable only to systems that are stabilizable with passive controllers. Third, to revisit a PBC theory that has been developed to overcome the dissipation obstacle as well as to make the incorporation of process prior knowledge more systematic. These two important features allow us to design energy-based controllers for a wide range of physical systems.

865 citations

Journal ArticleDOI
TL;DR: This work describes a class of systems for which IDA-PBC yields a smooth asymptotically stabilizing controller with a guaranteed domain of attraction, given in terms of solvability of certain partial differential equations.
Abstract: We consider the application of a formulation of passivity-based control (PBC), known as interconnection and damping assignment (IDA) to the problem of stabilization of underactuated mechanical systems, which requires the modification of both the potential and the kinetic energies. Our main contribution is the characterization of a class of systems for which IDA-PBC yields a smooth asymptotically stabilizing controller with a guaranteed domain of attraction. The class is given in terms of solvability of certain partial differential equations. One important feature of IDA-PBC, stemming from its Hamiltonian formulation, is that it provides new degrees of freedom for the solution of these equations. Using this additional freedom, we are able to show that the method of "controlled Lagrangians"-in its original formulation-may be viewed as a special case of our approach. As illustrations we design asymptotically stabilizing IDA-PBCs for the classical ball and beam system and a novel inertia wheel pendulum.

803 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This note investigates a simple event-triggered scheduler based on the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant and shows how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.
Abstract: In this note, we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant. This controller has for objective guaranteeing that (control unrelated) software tasks meet their deadlines and that stabilizing control tasks asymptotically stabilize the plant. We investigate a simple event-triggered scheduler based on this feedback paradigm and show how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.

3,695 citations

Journal ArticleDOI
TL;DR: A tutorial account of variable structure control with sliding mode is presented, introducing in a concise manner the fundamental theory, main results, and practical applications of this powerful control system design approach.
Abstract: A tutorial account of variable structure control with sliding mode is presented. The purpose is to introduce in a concise manner the fundamental theory, main results, and practical applications of this powerful control system design approach. This approach is particularly attractive for the control of nonlinear systems. Prominent characteristics such as invariance, robustness, order reduction, and control chattering are discussed in detail. Methods for coping with chattering are presented. Both linear and nonlinear systems are considered. Future research areas are suggested and an extensive list of references is included. >

2,884 citations

Proceedings ArticleDOI
07 Dec 1999
TL;DR: In this article, it was shown that scale-independent hysteresis can produce switching that is slow-on-the-average and therefore the results mentioned above can be used to study the stability of adaptive control systems.
Abstract: It is shown that switching among stable linear systems results in a stable system provided that switching is "slow-on-the-average". In particular, it is proved that exponential stability is achieved when the number of switches in any finite interval grows linearly with the length of the interval, and the growth rate is sufficiently small. Moreover, the exponential stability is uniform over all switchings with the above property. For switched systems with inputs this guarantees that several input-to-state induced norms are bounded uniformly over all slow-on-the-average switchings. These results extend to classes of nonlinear switched systems that satisfy suitable uniformity assumptions. In this paper it is also shown that, in a supervisory control context, scale-independent hysteresis can produce switching that is slow-on-the-average and therefore the results mentioned above can be used to study the stability of hysteresis-based adaptive control systems.

2,197 citations