scispace - formally typeset
Search or ask a question
Author

Ron Kohavi

Other affiliations: Blue Martini Software, Stanford University, Amazon.com  ...read more
Bio: Ron Kohavi is an academic researcher from Microsoft. The author has contributed to research in topics: A/B testing & Knowledge extraction. The author has an hindex of 58, co-authored 102 publications receiving 39459 citations. Previous affiliations of Ron Kohavi include Blue Martini Software & Stanford University.


Papers
More filters
Proceedings Article
Ron Kohavi1
20 Aug 1995
TL;DR: The results indicate that for real-word datasets similar to the authors', the best method to use for model selection is ten fold stratified cross validation even if computation power allows using more folds.
Abstract: We review accuracy estimation methods and compare the two most common methods crossvalidation and bootstrap. Recent experimental results on artificial data and theoretical re cults in restricted settings have shown that for selecting a good classifier from a set of classifiers (model selection), ten-fold cross-validation may be better than the more expensive leaveone-out cross-validation. We report on a largescale experiment--over half a million runs of C4.5 and a Naive-Bayes algorithm--to estimate the effects of different parameters on these algrithms on real-world datasets. For crossvalidation we vary the number of folds and whether the folds are stratified or not, for bootstrap, we vary the number of bootstrap samples. Our results indicate that for real-word datasets similar to ours, The best method to use for model selection is ten fold stratified cross validation even if computation power allows using more folds.

11,185 citations

Journal ArticleDOI
TL;DR: The wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain and compares the wrapper approach to induction without feature subset selection and to Relief, a filter approach tofeature subset selection.

8,610 citations

Journal ArticleDOI
TL;DR: It is found that Bagging improves when probabilistic estimates in conjunction with no-pruning are used, as well as when the data was backfit, and that Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference.
Abstract: Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review these algorithms and describe a large empirical study comparing several variants in conjunction with a decision tree inducer (three variants) and a Naive-Bayes inducer. The purpose of the study is to improve our understanding of why and when these algorithms, which use perturbation, reweighting, and combination techniques, affect classification error. We provide a bias and variance decomposition of the error to show how different methods and variants influence these two terms. This allowed us to determine that Bagging reduced variance of unstable methods, while boosting methods (AdaBoost and Arc-x4) reduced both the bias and variance of unstable methods but increased the variance for Naive-Bayes, which was very stable. We observed that Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference. Voting variants, some of which are introduced in this paper, include: pruning versus no pruning, use of probabilistic estimates, weight perturbations (Wagging), and backfitting of data. We found that Bagging improves when probabilistic estimates in conjunction with no-pruning are used, as well as when the data was backfit. We measure tree sizes and show an interesting positive correlation between the increase in the average tree size in AdaBoost trials and its success in reducing the error. We compare the mean-squared error of voting methods to non-voting methods and show that the voting methods lead to large and significant reductions in the mean-squared errors. Practical problems that arise in implementing boosting algorithms are explored, including numerical instabilities and underflows. We use scatterplots that graphically show how AdaBoost reweights instances, emphasizing not only “hard” areas but also outliers and noise.

2,686 citations

Book ChapterDOI
10 Jul 1994
TL;DR: A method for feature subset selection using cross-validation that is applicable to any induction algorithm is described, and experiments conducted with ID3 and C4.5 on artificial and real datasets are discussed.
Abstract: We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small high-accuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features into useful categories of relevance. We present definitions for irrelevance and for two degrees of relevance. These definitions improve our understanding of the behavior of previous subset selection algorithms, and help define the subset of features that should be sought. The features selected should depend not only on the features and the target concept, but also on the induction algorithm. We describe a method for feature subset selection using cross-validation that is applicable to any induction algorithm, and discuss experiments conducted with ID3 and C4.5 on artificial and real datasets.

2,581 citations

Book ChapterDOI
09 Jul 1995
TL;DR: Binning, an unsupervised discretization method, is compared to entropy-based and purity-based methods, which are supervised algorithms, and it is found that the performance of the Naive-Bayes algorithm significantly improved when features were discretized using an entropy- based method.
Abstract: Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify defining characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised discretization method, to entropy-based and purity-based methods, which are supervised algorithms. We found that the performance of the Naive-Bayes algorithm significantly improved when features were discretized using an entropy-based method. In fact, over the 16 tested datasets, the discretized version of Naive-Bayes slightly outperformed C4.5 on average. We also show that in some cases, the performance of the C4.5 induction algorithm significantly improved if features were discretized in advance; in our experiments, the performance never significantly degraded, an interesting phenomenon considering the fact that C4.5 is capable of locally discretizing features.

2,089 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Journal ArticleDOI
TL;DR: In this article, a method of over-sampling the minority class involves creating synthetic minority class examples, which is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
Abstract: An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of oversampling the minority (abnormal)cla ss and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space)tha n only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space)t han varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC)and the ROC convex hull strategy.

17,313 citations

Journal ArticleDOI
TL;DR: The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.

17,017 citations