scispace - formally typeset
Search or ask a question
Author

Ron Weiss

Bio: Ron Weiss is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Synthetic biology & Speech synthesis. The author has an hindex of 82, co-authored 292 publications receiving 89189 citations. Previous affiliations of Ron Weiss include French Institute for Research in Computer Science and Automation & Google.


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes an approach for the analysis of a class of uncertain piecewise-multiaffine differential equation models that are well adapted to the experimental data currently available and present interesting mathematical properties that allow the development of efficient algorithms for solving robustness analyses and tuning problems.
Abstract: Motivation: The goal of synthetic biology is to design and construct biological systems that present a desired behavior. The construction of synthetic gene networks implementing simple functions has demonstrated the feasibility of this approach. However, the design of these networks is difficult, notably because existing techniques and tools are not adapted to deal with uncertainties on molecular concentrations and parameter values. Results: We propose an approach for the analysis of a class of uncertain piecewise-multiaffine differential equation models. This modeling framework is well adapted to the experimental data currently available. Moreover, these models present interesting mathematical properties that allow the development of efficient algorithms for solving robustness analyses and tuning problems. These algorithms are implemented in the tool RoVerGeNe, and their practical applicability and biological relevance are demonstrated on the analysis of the tuning of a synthetic transcriptional cascade built in Escherichia coli. Availability: RoVerGeNe and the transcriptional cascade model are available at http://iasi.bu.edu/%7Ebatt/rovergene/rovergene.htm Contact: gregory.batt@imag.fr

147 citations

Proceedings Article
01 Jan 2019
TL;DR: This article proposed a conditional generative model based on the variational autoencoder (VAE) framework, with two levels of hierarchical latent variables, a categorical variable representing attribute groups (e.g. clean/noisy) and a multivariate Gaussian variable, which characterizes specific attribute configurations and enables disentangling fine-grained control over these attributes.
Abstract: This paper proposes a neural sequence-to-sequence text-to-speech (TTS) model which can control latent attributes in the generated speech that are rarely annotated in the training data, such as speaking style, accent, background noise, and recording conditions. The model is formulated as a conditional generative model based on the variational autoencoder (VAE) framework, with two levels of hierarchical latent variables. The first level is a categorical variable, which represents attribute groups (e.g. clean/noisy) and provides interpretability. The second level, conditioned on the first, is a multivariate Gaussian variable, which characterizes specific attribute configurations (e.g. noise level, speaking rate) and enables disentangled fine-grained control over these attributes. This amounts to using a Gaussian mixture model (GMM) for the latent distribution. Extensive evaluation demonstrates its ability to control the aforementioned attributes. In particular, we train a high-quality controllable TTS model on real found data, which is capable of inferring speaker and style attributes from a noisy utterance and use it to synthesize clean speech with controllable speaking style.

140 citations

Proceedings ArticleDOI
01 Jul 1997
TL;DR: RMAP as mentioned in this paper is a fast and practical query refinement algorithm that refines multiple term queries by dynamically combining precomputed suggestions for single term queries and achieves accuracy comparable to a much slower algorithm, although both algorithms lag behind the best possible term suggestions offered by the oracle.
Abstract: Query Refinement is an essential information retrieval tool that interactively recommends new terms related to a particular query. This paper introduces concept recall, an experimental measure of an algorithm’s ability to suggest terms humans have judged to be semantically related to an information need. This study uses precision improvement experiments to measure the ability of an algorithm to produce single term query modifications that predict a user’s information need as partially encoded by the query. An omcie algorithm produces ideal query modifications, providing a meaningful context for interpreting precision improvement results. This study also introduces RMAP, a fast and practical query refinement algorithm that refines multiple term queries by dynamically combining precomputed suggestions for single term queries. RMAP achieves accuracy comparable to a much slower algorithm, although both RMAP and the slower algorithm lag behind the best possible term suggestions offered by the oracle. We believe RMAP is fast enough to be integrated into present day Internet search engines: RMAP computes 100 term suggestions for a 160,000 document collection in 15 ms on a low-end PC.

138 citations

Book ChapterDOI
13 Jun 2000
TL;DR: In this paper, the Lux operon of Vibrio fischeri has been used to engineer intercellular communication mechanisms between living bacterial cells to perform directed engineering of multicellular structures.
Abstract: Multicellular organisms create complex patterned structures from identical, unreliable components. Learning how to engineer such robust behavior is important to both an improved understanding of computer science and to a better understanding of the natural developmental process. Earlier work by our colleagues and ourselves on amorphous computing demonstrates in simulation how one might build complex patterned behavior in this way. This work reports on our first efforts to engineer microbial cells to exhibit this kind of multicellular pattern directed behavior. We describe a specific natural system, the Lux operon of Vibrio fischeri, which exhibits density dependent behavior using a well characterized set of genetic components. We have isolated, sequenced, and used these components to engineer intercellular communication mechanisms between living bacterial cells. In combination with digitally controlled intracellular genetic circuits, we believe this work allows us to begin the more difficult process of using these communication mechanisms to perform directed engineering of multicellular structures, using techniques such as chemical diffusion dependent behavior. These same techniques form an essential part of our toolkit for engineering with life, and are widely applicable in the field of microbial robotics, with potential applications in medicine, environmental monitoring and control, engineered crop cultivation, and molecular scale fabrication.

138 citations

Journal ArticleDOI
TL;DR: This work presents a novel approach for generating and then co-differentiating hiPSC-derived progenitors and demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCS as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues.
Abstract: Human induced pluripotent stem cells (hiPSCs) have potential for personalized and regenerative medicine. While most of the methods using these cells have focused on deriving homogenous populations of specialized cells, there has been modest success in producing hiPSC-derived organotypic tissues or organoids. Here we present a novel approach for generating and then co-differentiating hiPSC-derived progenitors. With a genetically engineered pulse of GATA-binding protein 6 (GATA6) expression, we initiate rapid emergence of all three germ layers as a complex function of GATA6 expression levels and tissue context. Within 2 weeks we obtain a complex tissue that recapitulates early developmental processes and exhibits a liver bud-like phenotype, including haematopoietic and stromal cells as well as a neuronal niche. Collectively, our approach demonstrates derivation of complex tissues from hiPSCs using a single autologous hiPSCs as source and generates a range of stromal cells that co-develop with parenchymal cells to form tissues.

132 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

14,872 citations

Journal ArticleDOI
01 Apr 1998
TL;DR: This paper provides an in-depth description of Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and looks at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.
Abstract: In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/. To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of web pages involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance of large-scale search engines on the web, very little academic research has been done on them. Furthermore, due to rapid advance in technology and web proliferation, creating a web search engine today is very different from three years ago. This paper provides an in-depth description of our large-scale web search engine -- the first such detailed public description we know of to date. Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical challenges involved with using the additional information present in hypertext to produce better search results. This paper addresses this question of how to build a practical large-scale system which can exploit the additional information present in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.

14,696 citations

Proceedings Article
11 Nov 1999
TL;DR: This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them, and shows how to efficiently compute PageRank for large numbers of pages.
Abstract: The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively about the relative importance of Web pages. This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them. We compare PageRank to an idealized random Web surfer. We show how to efficiently compute PageRank for large numbers of pages. And, we show how to apply PageRank to search and to user navigation.

14,400 citations

Proceedings ArticleDOI
TL;DR: This paper proposes a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning and provides insights on cache access patterns, data compression and sharding to build a scalable tree boosting system called XGBoost.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

13,333 citations