scispace - formally typeset
Search or ask a question
Author

Ron Weiss

Bio: Ron Weiss is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Synthetic biology & Speech synthesis. The author has an hindex of 82, co-authored 292 publications receiving 89189 citations. Previous affiliations of Ron Weiss include French Institute for Research in Computer Science and Automation & Google.


Papers
More filters
Journal ArticleDOI
TL;DR: Viral protease RNA-binding proteins and protease–protease genetic circuits that ultimately regulate mRNA translation are developed to design artificial circuits that can reprogram cellular function with potential benefits as research tools and for future in vivo therapeutics and biotechnological applications.
Abstract: The development of RNA-encoded regulatory circuits relying on RNA-binding proteins (RBPs) has enhanced the applicability and prospects of post-transcriptional synthetic network for reprogramming cellular functions. However, the construction of RNA-encoded multilayer networks is still limited by the availability of composable and orthogonal regulatory devices. Here, we report on control of mRNA translation with newly engineered RBPs regulated by viral proteases in mammalian cells. By combining post-transcriptional and post-translational control, we expand the operational landscape of RNA-encoded genetic circuits with a set of regulatory devices including: i) RBP-protease, ii) protease-RBP, iii) protease–protease, iv) protein sensor protease-RBP, and v) miRNA-protease/RBP interactions. The rational design of protease-regulated proteins provides a diverse toolbox for synthetic circuit regulation that enhances multi-input information processing-actuation of cellular responses. Our approach enables design of artificial circuits that can reprogram cellular function with potential benefits as research tools and for future in vivo therapeutics and biotechnological applications. RNA-encoded regulatory circuits are desirable because they do not integrate in the host and are less immunogenic, but the availability of regulatory devices is limited. Here the authors develop viral protease RNA-binding proteins and protease–protease genetic circuits that ultimately regulate mRNA translation.

48 citations

Journal Article
01 Jun 2017-Nature
TL;DR: Metafluidics is an open-source, community-driven repository that hosts digital design files, assembly specifications, and open- source software to enable users to build, configure, and operate a microfluidic device.
Abstract: Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.

48 citations

Posted Content
TL;DR: It is demonstrated that a high quality end-to-end ST model can be trained using only weakly supervised datasets, and that synthetic data sourced from unlabeled monolingual text or speech can be used to improve performance.
Abstract: End-to-end Speech Translation (ST) models have many potential advantages when compared to the cascade of Automatic Speech Recognition (ASR) and text Machine Translation (MT) models, including lowered inference latency and the avoidance of error compounding. However, the quality of end-to-end ST is often limited by a paucity of training data, since it is difficult to collect large parallel corpora of speech and translated transcript pairs. Previous studies have proposed the use of pre-trained components and multi-task learning in order to benefit from weakly supervised training data, such as speech-to-transcript or text-to-foreign-text pairs. In this paper, we demonstrate that using pre-trained MT or text-to-speech (TTS) synthesis models to convert weakly supervised data into speech-to-translation pairs for ST training can be more effective than multi-task learning. Furthermore, we demonstrate that a high quality end-to-end ST model can be trained using only weakly supervised datasets, and that synthetic data sourced from unlabeled monolingual text or speech can be used to improve performance. Finally, we discuss methods for avoiding overfitting to synthetic speech with a quantitative ablation study.

47 citations

Journal ArticleDOI
TL;DR: A data-driven algorithm for automatically identifying repeated patterns in music which analyzes a feature matrix using shift-invariant probabilistic latent component analysis is described, resulting in an algorithm that is competitive with other state-of-the-art segmentation algorithms based on hidden Markov models and self similarity matrices.
Abstract: We describe a data-driven algorithm for automatically identifying repeated patterns in music which analyzes a feature matrix using shift-invariant probabilistic latent component analysis. We utilize sparsity constraints to automatically identify the number of patterns and their lengths, parameters that would normally need to be fixed in advance, as well as to control the structure of the decomposition. The proposed analysis is applied to beat-synchronous chromagrams in order to concurrently extract recurrent harmonic motifs and their locations within a song. We demonstrate how the analysis can be used to accurately identify riffs in popular music and explore the relationship between the derived parameters and a song's underlying metrical structure. Finally, we show how this analysis can be used for long-term music structure segmentation, resulting in an algorithm that is competitive with other state-of-the-art segmentation algorithms based on hidden Markov models and self similarity matrices.

47 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

14,872 citations

Journal ArticleDOI
01 Apr 1998
TL;DR: This paper provides an in-depth description of Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and looks at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.
Abstract: In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/. To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of web pages involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance of large-scale search engines on the web, very little academic research has been done on them. Furthermore, due to rapid advance in technology and web proliferation, creating a web search engine today is very different from three years ago. This paper provides an in-depth description of our large-scale web search engine -- the first such detailed public description we know of to date. Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical challenges involved with using the additional information present in hypertext to produce better search results. This paper addresses this question of how to build a practical large-scale system which can exploit the additional information present in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.

14,696 citations

Proceedings Article
11 Nov 1999
TL;DR: This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them, and shows how to efficiently compute PageRank for large numbers of pages.
Abstract: The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively about the relative importance of Web pages. This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them. We compare PageRank to an idealized random Web surfer. We show how to efficiently compute PageRank for large numbers of pages. And, we show how to apply PageRank to search and to user navigation.

14,400 citations

Proceedings ArticleDOI
TL;DR: This paper proposes a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning and provides insights on cache access patterns, data compression and sharding to build a scalable tree boosting system called XGBoost.
Abstract: Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

13,333 citations