Author
Ronald D. Henderson
Bio: Ronald D. Henderson is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Reynolds number & Instability. The author has an hindex of 9, co-authored 11 publications receiving 2634 citations.
Papers
More filters
TL;DR: In this paper, a global numerical stability analysis of the periodic wake of a circular cylinder for Reynolds numbers between 140 and 300 is presented, showing that the two-dimensional wake becomes (absolutely) linearly unstable to three-dimensional perturbations at a critical Reynolds number of 1885±10.
Abstract: Results are reported from a highly accurate, global numerical stability analysis of the periodic wake of a circular cylinder for Reynolds numbers between 140 and 300 The analysis shows that the two-dimensional wake becomes (absolutely) linearly unstable to three-dimensional perturbations at a critical Reynolds number of 1885±10 The critical spanwise wavelength is 396 ± 002 diameters and the critical Floquet mode corresponds to a ‘Mode A’ instability At Reynolds number 259 the two-dimensional wake becomes linearly unstable to a second branch of modes with wavelength 0822 diameters at onset Stability spectra and corresponding neutral stability curves are presented for Reynolds numbers up to 300
792 citations
TL;DR: In this article, high-resolution computer simulations are presented to quantify the change in viscous drag, pressure drag, and base pressure coefficients of a circular cylinder near the onset of vortex shedding, showing that there is a sharp transition in the forces acting on a body moving through a fluid when it produces an unsteady wake.
Abstract: A closer look at the drag curve for a circular cylinder near the onset of vortex shedding reveals that there is a sharp transition in the forces acting on a body moving through a fluid when it produces an unsteady wake. In this Letter results from high‐resolution computer simulations are presented to quantify the change in viscous drag, pressure drag, and base pressure coefficients.
447 citations
TL;DR: In this paper, a detailed study of the wake structures and flow dynamics associated with simulated two-dimensional flows past a circular cylinder that is either stationary or in simple harmonic cross-flow oscillation is presented.
Abstract: In this paper we describe a detailed study of the wake structures and flow dynamics associated with simulated two-dimensional flows past a circular cylinder that is either stationary or in simple harmonic cross-flow oscillation. Results are examined for Re = 500 and a fixed motion amplitude of y(max)/D = 0.25. The study concentrates on a domain of oscillation frequencies near the natural shedding frequency of the fixed cylinder. In addition to the change in phase of vortex shedding with respect to cylinder motion observed in previous experimental studies, we note a central band of frequencies for which the wake exhibits long-time-scale relaxation oscillator behaviour. Time-periodic states with asymmetric wake structures and non-zero mean lift were also observed for oscillation frequencies near the lower edge of the relaxation oscillator band. In this regime we compute a number of bifurcations between different wake configurations and show that the flow state is not a unique function of the oscillation frequency. Results are interpreted using an analysis of vorticity generation and transport in the base region of the cylinder. We suggest that the dynamics of the change in phase of shedding arise from a competition between two different mechanisms of vorticity production.
358 citations
TL;DR: In this article, a simulation of the transition from two-dimensional to three-dimensional states due to secondary instability in the wake of a circular cylinder is presented. And the authors quantify the nonlinear response of the system to threedimensional perturbations near threshold for the two separate linear instabilities of the wake: mode A and mode B.
Abstract: Results are reported on direct numerical simulations of transition from two-dimensional to three-dimensional states due to secondary instability in the wake of a circular cylinder. These calculations quantify the nonlinear response of the system to three-dimensional perturbations near threshold for the two separate linear instabilities of the wake: mode A and mode B. The objectives are to classify the nonlinear form of the bifurcation to mode A and mode B and to identify the conditions under which the wake evolves to periodic, quasi-periodic, or chaotic states with respect to changes in spanwise dimension and Reynolds number. The onset of mode A is shown to occur through a subcritical bifurcation that causes a reduction in the primary oscillation frequency of the wake at saturation. In contrast, the onset of mode B occurs through a supercritical bifurcation with no frequency shift near threshold. Simulations of the three-dimensional wake for fixed Reynolds number and increasing spanwise dimension show that large systems evolve to a state of spatiotemporal chaos, and suggest that three-dimensionality in the wake leads to irregular states and fast transition to turbulence at Reynolds numbers just beyond the onset of the secondary instability. A key feature of these ‘turbulent’ states is the competition between self-excited, three-dimensional instability modes (global modes) in the mode A wavenumber band. These instability modes produce irregular spatiotemporal patterns and large-scale ‘spot-like’ disturbances in the wake during the breakdown of the regular mode A pattern. Simulations at higher Reynolds number show that long-wavelength interactions modulate fluctuating forces and cause variations in phase along the span of the cylinder that reduce the fluctuating amplitude of lift and drag. Results of both two-dimensional and three-dimensional simulations are presented for a range of Reynolds number from about 10 up to 1000.
349 citations
TL;DR: In this paper, a three-dimensional computational stability analysis of flow over a backward-facing step with an expansion ratio (outlet to inlet height) of 2 at Reynolds numbers between 450 and 1050 is presented.
Abstract: Results are reported from a three-dimensional computational stability analysis of flow over a backward-facing step with an expansion ratio (outlet to inlet height) of 2 at Reynolds numbers between 450 and 1050. The analysis shows that the first absolute linear instability of the steady two-dimensional flow is a steady three-dimensional bifurcation at a critical Reynolds number of 748. The critical eigenmode is localized to the primary separation bubble and has a flat roll structure with a spanwise wavelength of 6.9 step heights. The system is further shown to be absolutely stable to two-dimensional perturbations up to a Reynolds number of 1500. Stability spectra and visualizations of the global modes of the system are presented for representative Reynolds numbers.
308 citations
Cited by
More filters
TL;DR: A review of wake vortex dynamics can be found in this article, with a focus on the three-dimensional aspects of nominally two-dimensional wake flows, as well as the discovery of several new phenomena in wakes.
Abstract: Since the review of periodic flow phenomena by Berger & Wille (1972) in this journal, over twenty years ago, there has been a surge of activity regarding bluff body wakes. Many of the questions regarding wake vortex dynamics from the earlier review have now been answered in the literature, and perhaps an essential key to our new understandings (and indeed to new questions) has been the recent focus, over the past eight years, on the three-dimensional aspects of nominally two-dimensional wake flows. New techniques in experiment, using laser-induced fluorescence and PIV (Particle-Image-Velocimetry), are vigorously being applied to wakes, but interestingly, several of the new discoveries have come from careful use of classical methods. There is no question that strides forward in understanding of the wake problem are being made possible by ongoing three- dimensional direct numerical simulations, as well as by the surprisingly successful use of analytical modeling in these flows, and by secondary stability analyses. These new developments, and the discoveries of several new phenomena in wakes, are presented in this review.
3,206 citations
TL;DR: In this paper, a review summarizes fundamental results and discoveries concerning vortex-induced vibration (VIV) that have been made over the last two decades, many of which are related to the push to explore very low mass and damping, and to new computational and experimental techniques that were hitherto not available.
Abstract: This review summarizes fundamental results and discoveries concerning vortex-induced vibration (VIV), that have been made over the last two decades, many of which are related to the push to explore very low mass and damping, and to new computational and experimental techniques that were hitherto not available. We bring together new concepts and phenomena generic to VIV systems, and pay special attention to the vortex dynamics and energy transfer that give rise to modes of vibration, the importance of mass and damping, the concept of a critical mass, the relationship between force and vorticity, and the concept of "effective elasticity," among other points. We present new vortex wake modes, generally in the framework of a map of vortex modes compiled from forced vibration studies, some of which cause free vibration. Some discussion focuses on topics of current debate, such as the decomposition of force, the relevance of the paradigm flow of an elastically mounted cylinder to more complex systems, and the relationship between forced and free vibration.
1,943 citations
TL;DR: A comprehensive review of the progress made during the past two decades on vortex-induced vibration (VIV) of mostly circular cylindrical structures subjected to steady uniform flow is presented in this article.
Abstract: This is a comprehensive review of the progress made during the past two decades on vortex-induced vibration (VIV) of mostly circular cylindrical structures subjected to steady uniform flow. The critical elements of the evolution of the ideas, theoretical insights, experimental methods, and numerical models are traced systematically; the strengths and weaknesses of the current state of the understanding of the complex fluid/structure interaction are discussed in some detail. Finally, some suggestions are made for further research on VIV.
1,368 citations
TL;DR: The intent of this document is to provide an introduction to modal analysis that is accessible to the larger fluid dynamics community and presents a brief overview of several of the well-established techniques.
Abstract: Simple aerodynamic configurations under even modest conditions can exhibit complex flows with a wide range of temporal and spatial features. It has become common practice in the analysis of these flows to look for and extract physically important features, or modes, as a first step in the analysis. This step typically starts with a modal decomposition of an experimental or numerical dataset of the flowfield, or of an operator relevant to the system. We describe herein some of the dominant techniques for accomplishing these modal decompositions and analyses that have seen a surge of activity in recent decades [1–8]. For a nonexpert, keeping track of recent developments can be daunting, and the intent of this document is to provide an introduction to modal analysis that is accessible to the larger fluid dynamics community. In particular, we present a brief overview of several of the well-established techniques and clearly lay the framework of these methods using familiar linear algebra. The modal analysis techniques covered in this paper include the proper orthogonal decomposition (POD), balanced proper orthogonal decomposition (balanced POD), dynamic mode decomposition (DMD), Koopman analysis, global linear stability analysis, and resolvent analysis.
1,110 citations
TL;DR: A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described, with special emphasis on the immersed boundary treatment for stationary and moving boundaries.
Abstract: A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method.
1,013 citations